-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsub_weight.m
108 lines (97 loc) · 3.27 KB
/
sub_weight.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
function sub_weight(iSub,opt)
% Construct the individual subject level weight matrix. Six different
% kinds of weight matrices are defined with different weighting functions
% (correlation or Gaussian) and different sparsifying schemes (spaital
% constraint, the k largest values in each row and each column, global
% threshold).
% 2015-11-6 15:17:03
% SLIC: a whole brain parcellation toolbox
% Copyright (C) 2016 Jing Wang
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
tic;
load parc_cavb.mat;
nM=size(cavb,1);
N=sum(cavb(:))-nM; % number of nonzero elements in the weight matrix
k=17; % for opt=3 or 4, keep the largest k values in each row and column
load sInfo.mat;
cSub=sSub(iSub);
load(sprintf('prep/sub%05d.mat',cSub)); % the preprocessed imaging data
R=img_gray*img_gray'; % cross-correlation
Rd=median(R(:)); % median of all correlation values
G=exp(-(1-R)/(1-Rd)); % weight by a Gaussian kernel
% clear the diagonals
R=R-diag(diag(R));
G=G-diag(diag(G));
if opt==1
% 1, correlation with spatial constraint, no threshold
W=R;
W=sparse(W.*cavb);
elseif opt==2
% 2, Gaussian with spatial constraint
W=G;
W=sparse(W.*cavb);
elseif opt==3
% 3, correlation, the k largest values in each row and each column
W=R;
flag=zeros(nM);
for i=1:nM
w=W(i,:);
[~,idx]=sort(w,'descend'); % sort each row
flag(i,idx(1:k))=1;
end
for i=1:nM
w=W(:,i);
[~,idx]=sort(w,'descend'); % sort each row
flag(idx(1:k),i)=1;
end
W=sparse(W.*flag);
elseif opt==4
% 4, Gaussian, the k largest values in each row and each column
W=G;
flag=zeros(nM);
for i=1:nM
w=W(i,:);
[~,idx]=sort(w,'descend'); % sort each row
flag(i,idx(1:k))=1;
end
for i=1:nM
w=W(:,i);
[~,idx]=sort(w,'descend'); % sort each row
flag(idx(1:k),i)=1;
end
W=sparse(W.*flag);
elseif opt==5
% 5, correlation, threshold
W=R;
tmp=sort(W(:),'descend');
threshold=tmp(N);
W=W.*(W>=threshold);
W=sparse(W);
elseif opt==6
% 6, Gaussian, threshold
W=G;
tmp=sort(W(:),'descend');
threshold=tmp(N);
W=W.*(W>=threshold);
W=sparse(W);
end
% Ratio of the number of nonzero elements in the weight matrix to the
% number of connected edges in the spatial constraint
ratio=sum(W(:)~=0)/N;
% For empty rows, set the diagonal elements to be ones
[W,nEmpty]=parc_diag(W);
time=toc/3600;
save(sprintf('sub_weight/sub%05d.mat',cSub),'W','ratio','nEmpty','time','-v7.3');
fprintf('Time to construct weight matrix: %0.2f hours. \n',time);