-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_benchmark.py
189 lines (152 loc) · 7.97 KB
/
main_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import argparse
import pickle
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from utils.process import count_node_type, load_cvdata, load_zincdata
from models.graphcnn import GraphCNN
torch.backends.cudnn.enabled = False
def train(args, model, device, train_graphs, optimizer, epoch):
model.train()
pbar = tqdm(range(0, len(train_graphs), args.batch_size), unit='batch')
loss_all = 0
for iteration, _ in enumerate(pbar):
selected_idx = np.random.permutation(len(train_graphs))[:args.batch_size]
batch_graph = [train_graphs[idx] for idx in selected_idx]
if args.dataset == "ZINC":
output = model(batch_graph)
labels = torch.FloatTensor([graph.label for graph in batch_graph]).view_as(output).to(device)
criterion = nn.MSELoss()
if args.dataset == "MNIST":
output = model(batch_graph)
labels = torch.LongTensor([graph.label for graph in batch_graph]).to(device)
criterion = nn.CrossEntropyLoss()
# compute loss
loss = criterion(output, labels)
# backprop
if optimizer is not None:
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_all += loss.detach().cpu().numpy()
# report
pbar.set_description('epoch: %d' % epoch)
train_loss = loss_all / (iteration + 1)
print("loss training: %f" % train_loss)
return train_loss
# pass data to model with mini-batch during testing to avoid memory overflow (does not perform back-propagation)
def pass_data_iteratively(model, graphs, minibatch_size=64):
model.eval()
output = []
idx = np.arange(len(graphs))
for i in range(0, len(graphs), minibatch_size):
sampled_idx = idx[i:i+minibatch_size]
if len(sampled_idx) == 0:
continue
output.append(model([graphs[j] for j in sampled_idx]).detach())
return torch.cat(output, 0)
def evaluate(args, model, device, graphs):
model.eval()
if args.dataset == "ZINC":
output = pass_data_iteratively(model, graphs)
labels = torch.FloatTensor([graph.label for graph in graphs]).view_as(output).to(device)
mae = nn.L1Loss(reduction='mean')
result = mae(output, labels).cpu().item()
if args.dataset == "MNIST":
output = pass_data_iteratively(model, graphs)
pred = output.max(1, keepdim=True)[1]
labels = torch.LongTensor([graph.label for graph in graphs]).view_as(pred).to(device)
correct = pred.eq(labels).sum().cpu().item()
result = correct / float(len(graphs))
return result
def main():
# Parameters settings
# Note: Hyper-parameters need to be tuned to obtain the results reported in the paper.
# Please refer to our paper for more details about hyper-parameter configurations.
parser = argparse.ArgumentParser(description='PyTorch implementation of PG-GNN for Benchmarking datasets')
parser.add_argument('--dataset', type=str, default="ZINC",
help='name of dataset: MNIST or ZINC (default: ZINC)')
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--batch_size', type=int, default=64,
help='input batch size for training (default: 64)')
parser.add_argument('--epochs', type=int, default=500,
help='maximum number of training epochs (default: 500)')
parser.add_argument('--lr', type=float, default=0.001,
help='initial learning rate (default: 0.001)')
parser.add_argument('--lr_factor', type=float, default=0.5,
help='reduce factor of learning rate (default: 0.5)')
parser.add_argument('--lr_patience', type=int, default=25,
help='decay rate patience of learning rate (default: 25)')
parser.add_argument('--lr_limit', type=float, default=5e-6,
help='minimum learning rate, stop training once it is reached (default: 5e-6)')
parser.add_argument('--seed', type=int, default=9,
help='random seed for running the experiment (default: 9)')
parser.add_argument('--num_layers', type=int, default=5,
help='number of layers INCLUDING the input one (default: 5)')
parser.add_argument('--num_mlp_layers', type=int, default=2,
help='number of layers for MLP/RNN EXCLUDING the input one (default: 2)')
parser.add_argument('--hidden_dim', type=int, default=128,
help='number of hidden units (default: 128)')
parser.add_argument('--final_dropout', type=float, default=0.0,
help='dropout ratio after the final layer (default: 0.0)')
parser.add_argument('--graph_pooling_type', type=str, default="sum", choices=["sum", "average"],
help='pooling for all nodes in a graph: sum or average')
parser.add_argument('--neighbor_pooling_type', type=str, default="lstm", choices=["sum", "average", "max", "srn", "gru", "lstm"],
help='pooling for neighboring nodes: sum, average, max, srn, gru, or lstm')
args = parser.parse_args()
# set up seeds and gpu device
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu")
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
if args.dataset == "MNIST":
mode = 'max'
with open('data/superpixels/%s.pkl' % args.dataset, 'rb') as f:
trainset, valset, testset = pickle.load(f)
train_graphs, num_classes = load_cvdata(trainset, state='train')
val_graphs, _ = load_cvdata(valset, state='val')
test_graphs, _ = load_cvdata(testset, state='test')
if args.dataset == "ZINC":
mode = 'min'
with open('data/molecules/%s.pkl' % args.dataset, 'rb') as f:
trainset, valset, testset, num_atom_type, num_bond_type = pickle.load(f)
num_classes = 1
num_node_type = count_node_type(trainset, valset, testset)
train_graphs = load_zincdata(trainset, num_node_type, state='train')
val_graphs = load_zincdata(valset, num_node_type, state='val')
test_graphs = load_zincdata(testset, num_node_type, state='test')
model = GraphCNN(args.num_layers, args.num_mlp_layers, train_graphs[0].node_features.shape[1], args.hidden_dim,
num_classes, args.final_dropout, args.graph_pooling_type, args.neighbor_pooling_type, device).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode=mode,
factor=args.lr_factor,
patience=args.lr_patience,
verbose=True)
train_curve = []
val_curve = []
test_curve = []
for epoch in range(1, args.epochs + 1):
train_loss = train(args, model, device, train_graphs, optimizer, epoch)
result_train = evaluate(args, model, device, train_graphs)
result_val = evaluate(args, model, device, val_graphs)
result_test = evaluate(args, model, device, test_graphs)
print("result train: %f, val: %f, test: %f" % (result_train, result_val, result_test))
# with open(filename, 'a') as f:
# f.write("%f %f %f %f" % (train_loss, result_train, result_val, result_test))
# f.write("\n")
train_curve.append(result_train)
val_curve.append(result_val)
test_curve.append(result_test)
scheduler.step(result_val)
print("")
if optimizer.param_groups[0]['lr'] < args.lr_limit:
break
print("===== Final result: %f" % test_curve[-1])
if __name__ == '__main__':
main()