Skip to content

The KSODI method evaluates the clarity and precision of human-AI interactions based on various dimensions and a well-defined scale **from the AI's perspective**, so that the AI becomes a trainer and coach for the user. It aims to systematically improve the quality of questions and answers, enabling more efficient human-machine communication.

License

Notifications You must be signed in to change notification settings

Alkiri-dAraion/KSODI-Methode

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CC BY 4.0
This work is licensed under a Creative Commons Attribution 4.0 International License.


  • 👋 Hi, I’m Anne Steinacker-Folkerts ( @Alkiri-dAraion ) - I came up with the idea for this project and I´m developing it together with Heiko Folkerts and Silke Honerkamp and sometimes some other friends
  • 👀 We´re interested in nature, animals (especially horses), art, music, gaming and IT
  • 🌱 I’m currently immersing myself and exploring the remarkable opportunities it presents for adaptive learning
  • 💞️ We`re looking to collaborate with professionals from various fields in the development of the KSODI - method
  • 📫 How to reach us: ksodi.horse@thevoid.email
  • ⚡ Fun fact: ...


KSODI Method

Description

The KSODI method evaluates the clarity and precision of human-AI interactions based on various dimensions and a well-defined scale from the AI's perspective, so that the AI becomes a trainer and coach for the user. It aims to systematically improve the quality of questions and answers, enabling more efficient human-machine communication.

Goals

  • Promote clearer and more precise questions in AI interactions
  • Improve response quality through well-defined context
  • Provide an open-source framework for developers to integrate into existing AI systems

Structure

  1. KSODI Question Method: Analysis and evaluation of user questions
  2. KSODI Answer Method: Assessment and optimization of AI responses
  3. Technical Integration: Providing open-source code for developers

CC-License

This work, KSODI - Method for Structuring and Optimising Human-AI Interactions © 2024 by Anne Steinacker-Folkerts, Heiko Folkerts, Silke Honerkamp is licensed under CC BY 4.0. To view a copy of this license, visit CC BY 4.0

Contributions

Developers are welcome to contribute code, provide feedback, or use the method in their own applications. Pull requests are welcome!

Invitation for Research & Feedback

Educators and psychologists are invited to explore the KSODI method in the context of user experience enhancement and preference-based suitability, drawing on theories from C.G. Jung. Contributions and feedback on its practical application and effectiveness in different user groups are highly encouraged.




KSODI-Methode

Beschreibung

Die KSODI-Methode bewertet die Verständlichkeit und Präzision von Mensch-KI-Interaktionen anhand verschiedener Dimensionen und einer klar definierten Skala aus Sicht der KI, so dass die KI zum Trainer und Coach für den Nutzer wird. Sie dient dazu, die Qualität von Fragen und Antworten systematisch zu verbessern und eine effizientere Mensch-Maschine-Kommunikation zu ermöglichen.

Ziel

  • Förderung von präziseren und verständlicheren Fragen in KI-Interaktionen
  • Verbesserung der Antwortqualität durch klare Kontextdefinition
  • Bereitstellung eines Open-Source-Frameworks für Entwickler zur Integration in bestehende KI-Systeme

Struktur

  1. KSODI-Fragen-Methode: Analyse und Bewertung von Nutzerfragen
  2. KSODI-Antwort-Methode: Evaluation und Optimierung von KI-Antworten
  3. Technische Integration: Bereitstellung von Open-Source-Code für Entwickler

About

The KSODI method evaluates the clarity and precision of human-AI interactions based on various dimensions and a well-defined scale **from the AI's perspective**, so that the AI becomes a trainer and coach for the user. It aims to systematically improve the quality of questions and answers, enabling more efficient human-machine communication.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published