Skip to content

Code for results of "Microbial communities experimental time series captured by stochastic logistic models"

License

Notifications You must be signed in to change notification settings

BCGardner/logistic_models

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Logistic models

This code produces the results of "Stochastic logistic models reproduce experimental time series of microbial communities".

elife_settings.py
generate_timeseries.py
make_colormap.py
neutral_covariance_test.py
neutrality_analysis.py
noise_analysis.py
noise_color_analysis.py
noise_parameters.py
noise_properties_plotting.py

Figures of main text in 'Figures eLife'

Figures of supplemental:
Fig 1 : Fisher Mehta neutral model
Fig 2 : Experimental
Fig 3 : Supplemental
Fig 4 : Understand noise color
Fig 5 : Study noise no interaction
Fig 6 : Experimental
Fig 7 : Experimental
Fig 8 : Experimental
Fig 9 : Experimental
Fig 10 : Experimental
Fig 11 : Experimental
Fig 12 : Study noise with interaction
Fig 13 : Study noise no interaction
Fig 14 : Study noise no interaction
Fig 15 : Figures eLife
Fig 16 : Study noise with interaction
Fig 17 : Width distribution dx
Fig 18 : Width distribution dx
Fig 19 : Understanding Fisher Mehta Figure 2B
Fig 20 : Influence interactions SOI and sgLV
Fig 21 : Influence interactions SOI and sgLV
Fig 22 : Influence interactions SOI and sgLV
Fig 23 : Influence interactions SOI and sgLV

About

Code for results of "Microbial communities experimental time series captured by stochastic logistic models"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.1%
  • Python 0.9%