JsonGrinder.jl
is a library that facilitates processing of JSON documents into
Mill.jl
structures for machine learning. It provides
functionality for JSON schema inference, extraction of JSON documents to a suitable representation
for machine learning, and constructing a model operating on this data.
Watch our introductory talk from JuliaCon 2021.
Run the following in REPL:
] add JsonGrinder
Kindly cite our work with the following entries if you find it interesting, please:
-
JsonGrinder.jl: automated differentiable neural architecture for embedding arbitrary JSON data
@article{Mandlik2022, author = {{\v{S}}imon Mandl{\'{i}}k and Mat{\v{e}}j Ra{\v{c}}insk{\'{y}} and Viliam Lis{\'{y}} and Tom{\'{a}}{\v{s}} Pevn{\'{y}}}, issn = {1533-7928}, issue = {298}, journal = {Journal of Machine Learning Research}, pages = {1-5}, title = {JsonGrinder.jl: automated differentiable neural architecture for embedding arbitrary JSON data}, volume = {23}, url = {http://jmlr.org/papers/v23/21-0174.html}, year = {2022}, }
-
Malicious Internet Entity Detection Using Local Graph Inference (practical
Mill.jl
andJsonGrinder.jl
application)@article{Mandlik2024, author = {{\v{S}}imon Mandl{\'{i}}k and Tom{\'{a}}{\v{s}} Pevn{\'{y}} and V{\'{a}}clav {\v{S}}m{\'{i}}dl and Luk{\'{a}}{\v{s}} Bajer}, journal = {IEEE Transactions on Information Forensics and Security}, title = {Malicious Internet Entity Detection Using Local Graph Inference}, year = {2024}, volume = {19}, pages = {3554-3566}, doi = {10.1109/TIFS.2024.3360867} }
-
this implementation (fill in the used
version
)@software{JsonGrinder, author = {{\v{S}}imon Mandl{\'{i}}k and Tom{\'{a}}{\v{s}} Pevn{\'{y}} and Mat{\v{e}}j Ra{\v{c}}insk{\'{y}}}, title = {JsonGrinder.jl: a flexible library for automated feature engineering and conversion of JSONs to Mill.jl structures}, url = {https://github.com/CTUAvastLab/JsonGrinder.jl}, version = {...}, }
If you want to contribute to JsonGrinder.jl, be sure to review the contribution guidelines.
We use GitHub issues for tracking requests and bugs.