Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix KeyError: 'decay_fraction' and TypeError: Object of type int64 is not JSON serializable #169

Merged
merged 5 commits into from
Jun 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ jobs:

- name: Install dependencies
run: |
uv pip install cython setuptools --system
uv pip install cython 'setuptools<70' --system

python setup.py build_ext --inplace

Expand Down
12 changes: 8 additions & 4 deletions chgnet/trainer/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,6 +149,7 @@ def __init__(
)

# Define learning rate scheduler
default_decay_frac = 1e-2
if scheduler in {"MultiStepLR", "multistep"}:
scheduler_params = kwargs.pop(
"scheduler_params",
Expand All @@ -164,8 +165,10 @@ def __init__(
self.scheduler = ExponentialLR(self.optimizer, **scheduler_params)
self.scheduler_type = "exp"
elif scheduler in {"CosineAnnealingLR", "CosLR", "Cos", "cos"}:
scheduler_params = kwargs.pop("scheduler_params", {"decay_fraction": 1e-2})
decay_fraction = scheduler_params.pop("decay_fraction")
scheduler_params = kwargs.pop(
"scheduler_params", {"decay_fraction": default_decay_frac}
)
decay_fraction = scheduler_params.pop("decay_fraction", default_decay_frac)
self.scheduler = CosineAnnealingLR(
self.optimizer,
T_max=10 * epochs, # Maximum number of iterations.
Expand All @@ -174,9 +177,10 @@ def __init__(
self.scheduler_type = "cos"
elif scheduler == "CosRestartLR":
scheduler_params = kwargs.pop(
"scheduler_params", {"decay_fraction": 1e-2, "T_0": 10, "T_mult": 2}
"scheduler_params",
{"decay_fraction": default_decay_frac, "T_0": 10, "T_mult": 2},
)
decay_fraction = scheduler_params.pop("decay_fraction")
decay_fraction = scheduler_params.pop("decay_fraction", default_decay_frac)
self.scheduler = CosineAnnealingWarmRestarts(
self.optimizer,
eta_min=decay_fraction * learning_rate,
Expand Down
14 changes: 13 additions & 1 deletion chgnet/utils/common_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import json
import os

import numpy as np
import nvidia_smi
import torch
from torch import Tensor
Expand Down Expand Up @@ -115,8 +116,19 @@ def write_json(dct: dict, filepath: str) -> dict:
Returns:
written dictionary
"""

def handler(obj: object) -> int | object:
"""Convert numpy int64 to int.

Fixes TypeError: Object of type int64 is not JSON serializable
reported in https://github.com/CederGroupHub/chgnet/issues/168.
"""
if isinstance(obj, np.integer):
return int(obj)
return obj

with open(filepath, "w") as file:
json.dump(dct, file)
json.dump(dct, file, default=handler)


def mkdir(path: str) -> str:
Expand Down
4 changes: 2 additions & 2 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ license = { text = "Modified BSD" }
dependencies = [
"ase>=3.23.0",
"cython>=3",
"numpy>=1.26",
"numpy>=1.26,<2",
"nvidia-ml-py3>=7.352.0",
"pymatgen>=2023.10.11",
"torch>=1.11.0",
Expand Down Expand Up @@ -46,7 +46,7 @@ find = { include = ["chgnet*"], exclude = ["tests", "tests*"] }
"chgnet.pretrained" = ["*", "**/*"]

[build-system]
requires = ["Cython", "setuptools>=65.0", "wheel"]
requires = ["Cython", "setuptools>=65,<70", "wheel"]
build-backend = "setuptools.build_meta"

[tool.ruff]
Expand Down
19 changes: 10 additions & 9 deletions tests/test_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,15 +55,18 @@ def test_trainer(tmp_path: Path, monkeypatch: pytest.MonkeyPatch) -> None:
wandb_init_kwargs=dict(anonymous="must"),
extra_run_config=extra_run_config,
)
trainer.train(
train_loader,
val_loader,
save_dir=tmp_path,
save_test_result=tmp_path / "test-preds.json",
)
assert dict(wandb.config).items() >= extra_run_config.items()
dir_name = "test_tmp_dir"
test_dir = tmp_path / dir_name
trainer.train(train_loader, val_loader, save_dir=test_dir)
for param in chgnet.composition_model.parameters():
assert param.requires_grad is False
assert test_dir.is_dir(), "Training dir was not created"
assert tmp_path.is_dir(), "Training dir was not created"

output_files = [file.name for file in test_dir.iterdir()]
output_files = [file.name for file in tmp_path.iterdir()]
for prefix in ("epoch", "bestE_", "bestF_"):
n_matches = sum(file.startswith(prefix) for file in output_files)
assert (
Expand Down Expand Up @@ -92,16 +95,14 @@ def test_trainer_composition_model(tmp_path: Path) -> None:
learning_rate=1e-2,
epochs=5,
)
dir_name = "test_tmp_dir2"
test_dir = tmp_path / dir_name
initial_weights = chgnet.composition_model.state_dict()["fc.weight"].clone()
trainer.train(
train_loader, val_loader, save_dir=test_dir, train_composition_model=True
train_loader, val_loader, save_dir=tmp_path, train_composition_model=True
)
for param in chgnet.composition_model.parameters():
assert param.requires_grad is True

output_files = list(test_dir.iterdir())
output_files = list(tmp_path.iterdir())
weights_path = next(file for file in output_files if file.name.startswith("epoch"))
new_chgnet = CHGNet.from_file(weights_path)
for param in new_chgnet.composition_model.parameters():
Expand Down
Loading