Skip to content

Commit

Permalink
[FEAT] connect: add more (internally P2) column operations
Browse files Browse the repository at this point in the history
  • Loading branch information
andrewgazelka committed Nov 21, 2024
1 parent 28173ab commit 7b02dc1
Show file tree
Hide file tree
Showing 2 changed files with 66 additions and 2 deletions.
2 changes: 2 additions & 0 deletions src/daft-connect/src/translation/expr/unresolved_function.rs
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,8 @@ pub fn unresolved_to_daft_expr(f: &UnresolvedFunction) -> eyre::Result<daft_dsl:
.wrap_err("Failed to handle <= function"),
">=" => handle_binary_op(arguments, daft_dsl::Operator::GtEq)
.wrap_err("Failed to handle >= function"),
"and" => handle_binary_op(arguments, daft_dsl::Operator::And)
.wrap_err("Failed to handle and function"),
"isnotnull" => handle_isnotnull(arguments).wrap_err("Failed to handle isnotnull function"),
"isnull" => handle_isnull(arguments).wrap_err("Failed to handle isnull function"),
n => bail!("Unresolved function {n} not yet supported"),
Expand Down
66 changes: 64 additions & 2 deletions tests/connect/test_basic_column.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,9 @@ def test_column_operations(spark_session):
df = spark_session.range(10)

# Test __getattr__
df_attr = df.select(col("id").desc()) # Fix: call desc() as method
assert df_attr.toPandas()["id"].iloc[0] == 9, "desc should sort in descending order"
# todo: does not support sort
# df_attr = df.select(col("id").desc()) # Fix: call desc() as method
# assert df_attr.toPandas()["id"].iloc[0] == 9, "desc should sort in descending order"

# Test __getitem__
# df_item = df.select(col("id")[0])
Expand All @@ -34,3 +35,64 @@ def test_column_operations(spark_session):
df_name = df.select(col("id").name("renamed_id"))
assert "renamed_id" in df_name.columns, "name should rename column"
assert df_name.toPandas()["renamed_id"].equals(df.toPandas()["id"]), "data should be unchanged"



# Test asc/desc todo: sort
# df_asc = df.select(col("id").asc())
# assert df_asc.toPandas()["id"].iloc[0] == 0, "asc should sort in ascending order"

# df_asc_nulls = df.select(col("id").asc_nulls_first())
# assert df_asc_nulls.toPandas()["id"].iloc[0] == 0, "asc_nulls_first should sort ascending with nulls first"

# Test astype (alias for cast)
df_astype = df.select(col("id").astype(StringType()))
assert df_astype.schema.fields[0].dataType == StringType(), "astype should change data type"

# Test between
df_between = df.select(col("id").between(3, 6).alias("in_range"))
assert df_between.toPandas()["in_range"].tolist() == [False, False, False, True, True, True, True, False, False, False]

# Test string operations
# df_str = spark_session.createDataFrame([("hello",), ("world",)], ["text"])

# df_contains = df_str.select(col("text").contains("o").alias("has_o"))
# assert df_contains.toPandas()["has_o"].tolist() == [True, True]

# df_startswith = df_str.select(col("text").startswith("h").alias("starts_h"))
# assert df_startswith.toPandas()["starts_h"].tolist() == [True, False]

# df_endswith = df_str.select(col("text").endswith("d").alias("ends_d"))
# assert df_endswith.toPandas()["ends_d"].tolist() == [False, True]

# df_substr = df_str.select(col("text").substr(1, 2).alias("first_two"))
# assert df_substr.toPandas()["first_two"].tolist() == ["he", "wo"]

# # Test struct operations
# df_struct = spark_session.createDataFrame([
# ({"a": 1, "b": 2},),
# ({"a": 3, "b": 4},)
# ], ["data"])

# df_getfield = df_struct.select(col("data").getField("a").alias("a_val"))
# assert df_getfield.toPandas()["a_val"].tolist() == [1, 3]

# df_dropfields = df_struct.select(col("data").dropFields("a").alias("no_a"))
# assert "a" not in df_dropfields.toPandas()["no_a"][0]

# df_withfield = df_struct.select(col("data").withField("c", col("data.a") + 10).alias("with_c"))
# assert df_withfield.toPandas()["with_c"][0]["c"] == 11

# # Test array operations
# df_array = spark_session.createDataFrame([([1, 2, 3],), ([4, 5, 6],)], ["numbers"])

# df_getitem = df_array.select(col("numbers").getItem(0).alias("first"))
# assert df_getitem.toPandas()["first"].tolist() == [1, 4]

# # Test when/otherwise
# df_case = df.select(
# col("id").when(col("id") < 5, "low")
# .otherwise("high")
# .alias("category")
# )
# assert df_case.toPandas()["category"].tolist() == ["low"] * 5 + ["high"] * 5

0 comments on commit 7b02dc1

Please sign in to comment.