v0.2.0
v0.2.0 with OpenWakeWord Support
Training models
Look here for information about how to train your own OpenWakeWord models. You can use a simple Google Colab notebook for a start or use a more detailed notebook that enables more customization (can produce high quality models, but requires more development experience).
Convert model to ONNX format
You might need to use tf2onnx to convert tensorflow tflite models to onnx format:
pip install -U tf2onnx
python -m tf2onnx.convert --tflite my_model_filename.tflite --output my_model_filename.onnx
Configure RealtimeSTT
Suggested starting parameters for OpenWakeWord usage:
with AudioToTextRecorder(
wakeword_backend="oww",
wake_words_sensitivity=0.35,
openwakeword_model_paths="word1.onnx,word2.onnx",
wake_word_buffer_duration=1,
) as recorder:
OpenWakeWord Test
-
Set up the openwakeword test project:
mkdir samantha_wake_word && cd samantha_wake_word curl -O https://raw.githubusercontent.com/KoljaB/RealtimeSTT/master/tests/openwakeword_test.py curl -L https://huggingface.co/KoljaB/SamanthaOpenwakeword/resolve/main/suh_mahn_thuh.onnx -o suh_mahn_thuh.onnx curl -L https://huggingface.co/KoljaB/SamanthaOpenwakeword/resolve/main/suh_man_tuh.onnx -o suh_man_tuh.onnx
Ensure you have
curl
installed for downloading files. If not, you can manually download the files from the provided URLs. -
Create and activate a virtual environment:
python -m venv venv
- For Windows:
venv\Scripts\activate
- For Unix-like systems (Linux/macOS):
source venv/bin/activate
- For macOS:
Usepython3
instead ofpython
andpip3
instead ofpip
if needed.
- For Windows:
-
Install dependencies:
python -m pip install --upgrade pip python -m pip install RealtimeSTT python -m pip install -U torch torchaudio --index-url https://download.pytorch.org/whl/cu121
The PyTorch installation command includes CUDA 12.1 support. Adjust if a different version is required.
-
Run the test script:
python openwakeword_test.py
On the very first start some models for openwakeword are downloaded.