Skip to content

An open library of adversary emulation plans designed to empower organizations to test their defenses based on real-world TTPs.

License

Notifications You must be signed in to change notification settings

L015H4CK/adversary_emulation_library

 
 

Repository files navigation

Adversary Emulation Library

In collaboration with Center Participants, the Center for Threat-Informed Defense (Center) has built a library of adversary emulation plans to allow organizations to evaluate their defensive capabilities against the real-world threats they face. Emulation plans are an essential component in testing current defenses for organizations that are looking to prioritize their defenses around actual adversary behavior. Focusing our energies on developing a set of common emulation plans that are available to all means that organizations can use their limited time and resources to focus on understanding how their defenses actually fare against real-world threats.

The library contains two types of adversary emulation plans: full emulation and micro emulation.

Full emulation plans are a comprehensive approach to emulating a specific adversary, e.g. FIN6, from initial access to exfiltration. These plans emulate a wide range of ATT&CK tactics & techniques and are designed to emulate a real breach from the designated adversary.

Micro emulation plans are a focused approach to emulating compound behaviors seen across multiple adversaries, e.g. webshells. These plans emulate a small amount of ATT&CK techniques that are typically performed as part of one adversary action.

Also see our blogs on the Adversary Emulation Library and Micro Emulation Plans.

Available adversary emulation plans are listed below:

Full Emulation Plans Intelligence Summary
FIN6 FIN6 is thought to be a financially motivated cyber-crime group. The group has aggressively targeted and compromised high-volume POS systems in the hospitality and retail sectors since at least 2015...
APT29 APT29 is thought to be an organized and well-resourced cyber threat actor whose collection objectives appear to align with the interests of the Russian Federation...
menuPass menuPass is thought to be threat group motivated by collection objectives, with targeting that is consistent with Chinese strategic objectives...
Carbanak Group Carbanak is a threat group who has been found to manipulate financial assets, such as by transferring funds from bank accounts or by taking over ATM infrastructures...
FIN7 FIN7 is a financially-motivated threat group that has been associated with malicious operations dating back to late 2015. The group is characterized by their persistent targeting and large-scale theft of payment card data from victim systems...
Sandworm Sandworm Team is a destructive threat group attributed to Russia's General Staff of the Armed Forces, Main Intelligence Directorate (GRU) that has been reportedly active since 2009. Sandworm is known for conducting large scale, well funded, destructive, and aggressive campaigns such as Olympic Destroyer, CrashOverride/Industroyer, and NotPetya...
Wizard Spider Wizard Spider is a Russia-based e-crime group originally known for the Trickbot banking malware. In August 2018, Wizard Spider added capabilities to their Trickbot software enabling the deployment of the Ryuk ransomware. This resulted in "big game hunting" campaigns, focused on targeting large organizations for high-ransom return rates...
OilRig OilRig is a cyber threat actor with operations aligning to the strategic objectives of the Iranian government. OilRig has been operational since at least 2014 and has a history of widespread impact, with operations directed against financial, government, energy, chemical, telecommunications and other sectors around the globe...
Micro Emulation Plans Intelligence Summary
Active Directory Enumeration Targets compound behaviors associated with TA0007 Discovery using behaviors associated with abuse of Active Directory...
File Access Targets the DS0022 File: File Access and DS0022 File: File Modification data sources. It covers file interactions like reading a file and modifying a file’s contents...
Named Pipes Targets the data source DS0023 Named Pipe. Named pipes are shared memory used for inter-process communication...
Process Injection Targets compound behaviors related to T1055 Process Injection. Process injection is commonly abused by malware to run code in another process, often to evade defenses...
User Execution Targets malicious activity associated with T1204 User Execution. User execution is commonly abused by adversaries as a means of executing malicious payloads...
Web Shells This micro emulation plan targets malicious activity surrounding T1505.003 Web Shell. Web shells are malware placed on compromised web (or other network-accessible) servers...
Windows Registry Targets the data source DS0024 Windows Registry. The Registry is a hierarchical database used by Windows to store critical data for the OS...

Philosophy

These adversary emulation plans are based on known-adversary behaviors and designed to empower red teams to manually emulate a specific threat actor in order to test and evaluate defensive capabilities from a threat-informed perspective. This approach empowers defenders to operationalize cyber threat intelligence to better understand and combat real-world adversaries. Rather than focusing on static signatures, these intelligence-driven emulation plans provide a repeatable means to test and tune defensive capabilities and products against the evolving Tactics, Techniques, and Procedures (TTPs) of threat actors and malware.

Adversary Emulation Background

Adversary emulation enables organizations to view their security through the eyes of a cyber adversary with the goal of improving defenses across the adversary’s lifecycle. As defenders this expands our attention and focus beyond just the final actions of the adversary achieving their operational objective to rather understand and appreciate every distinct behavior (that could have been detected and/or mitigated) leading up to that point.

Each emulation plan is rooted in intelligence reports and other artifacts that capture and describe breaches and campaigns publicly attributed to a specific named threat actor. To develop each plan, we research and model each threat actor, focusing not only on what they do (ex: gather credentials from victims) but also how (using what specific tools/utilities/commands?) and when (during what stage of a breach?). We then develop emulation content that mimics the underlying behaviors utilized by the threat actor (i.e. not an exact representation, rather capturing the pertinent elements that accurately generate appropriate test telemetry for defenders). This approach results in nuanced emulation plans, each capturing unique scenarios and perspectives that we can leverage as threat-informed defenders.

Getting Started with Full Adversary Emulation Plans

As is the case with traditional red teaming and penetration testing, adversary emulation is a specific style of offensive assessment performed to help us test and tune our defenses. In this case, our objective is to operationalize cyber threat intelligence describing behaviors observed in specific campaigns or malware samples. From this intelligence, we select and execute a subset of behaviors (and their variations) to assess our defenses from the perspective of the specific threat.

As described in the next section, each emulation plan captures specific threat scenarios. These scenarios can be executed end-to-end, or individual behaviors can be tested. Organizations can also choose to further customize the scenarios and/or behaviors within each emulation plan to better fit their specific environment, priorities, or to be shaped by additional intelligence.

In summary, each full emulation plan should be perceived as input to an offensive assessment/red team. The content can be used as strict instructions to follow, or as just a starting point to be built upon and personalized.

Full Emulation Plan Structure

Each emulation plan focuses on a specific named threat actor. The README of each individual plan provides a curated summary of available cyber threat intelligence, composed of an intelligence overview of the actor (describing who they target, how, and why where possible) as well as the scope of their activity (i.e. breadth of techniques and malware used). All presented information is cited back to relevant publicly available cyber threat intelligence and communicated and annotated via ATT&CK.

Within each emulation plan, the operational flow provides a high-level summary of the captured scenario(s). These scenarios will vary based on the adversary and available intelligence, but typically follow a sequential progression of how the actor breaches then works towards achieving their operational objectives within a victim environment (espionage, data/system destruction, etc.).

The content to execute the scenario(s) is broken down into step-by-step procedures provided in both human and machine-readable formats. Scenarios can be executed end-to-end or as individual tests. The human-readable formats provide additional relevant background where possible as well as any setup prerequisites, while the machine-readable format is designed to be programmatically parsed (ex: read, reformatted, and ingested into an automated agent, such as CALDERA and/or breach simulation frameworks).

Detailed documenation for our full emulation plan structure can be found here.

Getting Starting with Micro Emulation Plans

Similar to full emulation plans, micro emulation plans are a type of adversary emulation that is designed to help us test and tune our defenses. However, these plans can be executed without a red team and without the need for an offensive assessment. Each plan is still composed of an intelligence overview for the behaviors being emulated, however we are emulating behaviors that are common across multiple adversaries as opposed to a singular adversary.

These plans are easy to execute, with no dependencies needed or special configuration of your environment. All plans can be executed from either a standalone or networked machine. They can be executed manually or integrated into automation software. We have provided an example of how to execute a plan with CALDERA, but these plans can be broadly applied to other platforms.

Each micro plan has default runtime options, however, detailed instructions can be found on the README for each plan on how to customize execution to fit your specific needs. We have included the source code and BUILD instructions for each plan, so that they can be modified and recompiled, as needed.

The micro plans can be downloaded from the Releases page.

Future Work

The threat landscape changes every day, as new groups/malware emerge and known adversaries adapt and evolve. The Center will continue to populate and maintain this library to match this growth curve through dedicated research efforts that aim to either create or update plans based on a specific adversary.

Questions and Feedback

Please submit issues for any technical questions/concerns or contact ctid@mitre-engenuity.org directly for more general inquiries.

Also see the guidance for contributors if are interested in contributing.

Liability / Responsible Usage

This content is only to be used with appropriate prior, explicit authorization for the purposes of assessing security posture and/or research.

Notice

Copyright 2020-2021 MITRE Engenuity. Approved for public release. Document number CT0005

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

This project makes use of ATT&CK®

ATT&CK Terms of Use

About

An open library of adversary emulation plans designed to empower organizations to test their defenses based on real-world TTPs.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 62.2%
  • PowerShell 20.8%
  • HTML 8.5%
  • Rich Text Format 3.9%
  • C# 1.7%
  • Python 1.0%
  • Other 1.9%