Skip to content

Mchockalingam/NASSCOM_Developer_Community

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dive into the world of advanced language understanding with Advanced_RAG. These Python notebooks offer a guided tour of Retrieval-Augmented Generation (RAG) using the Langchain framework, perfect for enhancing Large Language Models (LLMs) with rich, contextual knowledge.

Notebooks Overview

Below is a detailed overview of each notebook present in this repository:

  • 01_Introduction_To_RAG.ipynb
    • Basic process of building RAG app(s)
  • 02_Query_Transformations.ipynb
    • Techniques for Modifying Questions for Retrieval
  • 03_Routing_To_Datasources.ipynb
    • Create Routing Mechanism for LLM to select the correct data Source
  • 04_Indexing_To_VectorDBs.ipynb
    • Various Indexing Methods in the Vector DB
  • 05_Retrieval_Mechanisms.ipynb
    • Reranking, RaG Fusion, and other Techniques
  • 06_Self_Reflection_Rag.ipynb
    • RAG that has self-reflection / self-grading on retrieved documents and generations.
  • 07_Agentic_Rag.ipynb
    • RAG that has agentic Flow on retrieved documents and generations.
  • 08_Adaptive_Agentic_Rag.ipynb
    • RAG that has adaptive agentic Flow.
  • 09_Corrective_Agentic_Rag.ipynb
    • RAG that has corrective agentic Flow on retrieved documents and generations.
  • 10_LLAMA_3_Rag_Agent_Local.ipynb
    • LLAMA 3 8B Agent Rag that works Locally.

Enhance your LLMs with the powerful combination of RAG and Langchain for more informed and accurate natural language generation.

About

Created for posting codes for NASSCOM Developer Community

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published