We now provide pre-trained weights for Voxel-RCNN and the augmented lidar points.
Our paper is available on ArXiv at https://arxiv.org/abs/2310.17842
-
Prepare for the running environment.
Please follow the docker image provided by
Voxel-R-CNN
to set up your environment. -
Replace the configuration files provided
Please download the related weights and files from the following links.
Baidu Cloud
orOneDrive
You need to change the 'get_lidar' function in pcdet/datasets/kitti/kitti_dataset.py around line 70 by
lidar_file = self.root_split_path / 'velodyne_fop_aug' / 'velodyne_fop_only_car_ped_-1' / ('%s.bin' % idx)
-
Your dataset dir should look like follows:
WYSIWYD ├── data │ ├── kitti │ │ │── ImageSets │ │ │── training │ │ │ ├──calib & velodyne & label_2 & image_2 & (optional: planes) & velodyne_fop_only_car_ped_-1 │ │ │── testing │ │ │ ├──calib & velodyne & image_2 │ │ │── gt_database │ │ │── kitti_infos_test.pkl │ │ │── kitti_infos_train.pkl │ │ │── kitti_infos_trainval.pkl │ │ │── kitti_infos_val.pkl ├── pcdet ├── tools ```
-
Inference specific weights
python tools/test.py --cfg_file /path_to_yaml_file/voxel_rcnn_3classes.yaml --batch_size 8 --workers 8 --ckpt /path_to_weight/main_res.pth
-
Train the model with the provided lidar data
Please take the YAML file provided for an inference, cancel the GT-Sampling in the training pipeline, and will be better for performance.
With the main_res.pth, the result should be as follows. Please feel free to check the further results from our paper.
Car AP_R40@0.70, 0.70, 0.70:
bbox AP:98.9053, 95.9023, 93.4399
bev AP:95.6424, 91.8239, 89.5842
3d AP:92.6015, 85.8442, 83.4265
aos AP:98.87, 95.71, 93.15
Pedestrian AP_R40@0.50, 0.50, 0.50:
bbox AP:80.4118, 78.1586, 71.7518
bev AP:80.0973, 75.2514, 68.6998
3d AP:75.5632, 69.3826, 64.5597
aos AP:37.56, 37.52, 34.45
Our codes are based on OpenPCDet
and some parts of the code were designed with reference to Pixel2Mesh