Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

code reuse #6

Merged
merged 2 commits into from
Aug 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions notebooks/display_source.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
from IPython.display import display, HTML
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import HtmlFormatter
import inspect

def display_source(obj, color=True):
obj_src = inspect.getsource(obj)
if color:
display(HTML(highlight(obj_src, PythonLexer(), HtmlFormatter())))
else:
print(obj_src)
57 changes: 57 additions & 0 deletions notebooks/module.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
import numpy as np

def adjust_pop_grid(tlon,tlat,field):
"""
Adjusts the grid of longitude and latitude values, along with the corresponding field data.

Parameters
----------
tlon : numpy.ndarray
2D array of longitude values.
tlat : numpy.ndarray
2D array of latitude values.
field : numpy.ma.MaskedArray
2D array of field data (e.g., temperature, salinity) corresponding to the tlon and tlat arrays.

Returns
-------
lon : numpy.ndarray
Adjusted 2D array of longitude values.
lat : numpy.ndarray
Adjusted 2D array of latitude values.
field : numpy.ma.MaskedArray
Adjusted 2D array of field data.

Example
-------
>>> lon, lat, field = adjust_pop_grid(tlon, tlat, field)
"""
nj = tlon.shape[0]
ni = tlon.shape[1]
xL = int(ni/2 - 1)
xR = int(xL + ni)

tlon = np.where(np.greater_equal(tlon,min(tlon[:,0])),tlon-360.,tlon)
lon = np.concatenate((tlon,tlon+360.),1)
lon = lon[:,xL:xR]

if ni == 320:
lon[367:-3,0] = lon[367:-3,0]+360.
lon = lon - 360.
lon = np.hstack((lon,lon[:,0:1]+360.))
if ni == 320:
lon[367:,-1] = lon[367:,-1] - 360.

# Trick cartopy into doing the right thing:
# it gets confused when the cyclic coords are identical
lon[:,0] = lon[:,0]-1e-8

# Periodicity
lat = np.concatenate((tlat,tlat),1)
lat = lat[:,xL:xR]
lat = np.hstack((lat,lat[:,0:1]))

field = np.ma.concatenate((field,field),1)
field = field[:,xL:xR]
field = np.ma.hstack((field,field[:,0:1]))
return lon,lat,field
43 changes: 3 additions & 40 deletions notebooks/ocn-carbonfluxes.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,9 @@
"import dask\n",
"import distributed\n",
"import s3fs\n",
"import netCDF4"
"import netCDF4\n",
"\n",
"from module import adjust_pop_grid"
]
},
{
Expand Down Expand Up @@ -150,45 +152,6 @@
"ds_grid"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d1f1efc5-a878-4d00-bbac-d0185863bea3",
"metadata": {},
"outputs": [],
"source": [
"def adjust_pop_grid(tlon,tlat,field):\n",
" nj = tlon.shape[0]\n",
" ni = tlon.shape[1]\n",
" xL = int(ni/2 - 1)\n",
" xR = int(xL + ni)\n",
"\n",
" tlon = np.where(np.greater_equal(tlon,min(tlon[:,0])),tlon-360.,tlon)\n",
" lon = np.concatenate((tlon,tlon+360.),1)\n",
" lon = lon[:,xL:xR]\n",
"\n",
" if ni == 320:\n",
" lon[367:-3,0] = lon[367:-3,0]+360.\n",
" lon = lon - 360.\n",
" lon = np.hstack((lon,lon[:,0:1]+360.))\n",
" if ni == 320:\n",
" lon[367:,-1] = lon[367:,-1] - 360.\n",
"\n",
" # Trick cartopy into doing the right thing:\n",
" # it gets confused when the cyclic coords are identical\n",
" lon[:,0] = lon[:,0]-1e-8\n",
" \n",
" # Periodicity\n",
" lat = np.concatenate((tlat,tlat),1)\n",
" lat = lat[:,xL:xR]\n",
" lat = np.hstack((lat,lat[:,0:1]))\n",
"\n",
" field = np.ma.concatenate((field,field),1)\n",
" field = field[:,xL:xR]\n",
" field = np.ma.hstack((field,field[:,0:1]))\n",
" return lon,lat,field"
]
},
{
"cell_type": "markdown",
"id": "2cdc4f48-ec2a-4f63-a309-53803f476f7b",
Expand Down
43 changes: 3 additions & 40 deletions notebooks/ocn-iron.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,9 @@
"from dask.distributed import LocalCluster\n",
"import pandas as pd\n",
"import s3fs\n",
"import netCDF4"
"import netCDF4\n",
"\n",
"from module import adjust_pop_grid"
]
},
{
Expand Down Expand Up @@ -132,45 +134,6 @@
"depths = ds_grid.z_t * 0.01"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "78660a8f-98bd-4f6a-b8f1-448d06787854",
"metadata": {},
"outputs": [],
"source": [
"def adjust_pop_grid(tlon,tlat,field):\n",
" nj = tlon.shape[0]\n",
" ni = tlon.shape[1]\n",
" xL = int(ni/2 - 1)\n",
" xR = int(xL + ni)\n",
"\n",
" tlon = np.where(np.greater_equal(tlon,min(tlon[:,0])),tlon-360.,tlon)\n",
" lon = np.concatenate((tlon,tlon+360.),1)\n",
" lon = lon[:,xL:xR]\n",
"\n",
" if ni == 320:\n",
" lon[367:-3,0] = lon[367:-3,0]+360.\n",
" lon = lon - 360.\n",
" lon = np.hstack((lon,lon[:,0:1]+360.))\n",
" if ni == 320:\n",
" lon[367:,-1] = lon[367:,-1] - 360.\n",
"\n",
" # Trick cartopy into doing the right thing:\n",
" # it gets confused when the cyclic coords are identical\n",
" lon[:,0] = lon[:,0]-1e-8\n",
" \n",
" # Periodicity\n",
" lat = np.concatenate((tlat,tlat),1)\n",
" lat = lat[:,xL:xR]\n",
" lat = np.hstack((lat,lat[:,0:1]))\n",
"\n",
" field = np.ma.concatenate((field,field),1)\n",
" field = field[:,xL:xR]\n",
" field = np.ma.hstack((field,field[:,0:1]))\n",
" return lon,lat,field"
]
},
{
"cell_type": "markdown",
"id": "3630bab7-a9ea-4433-9eb8-f8555cab07bd",
Expand Down
43 changes: 3 additions & 40 deletions notebooks/ocn-macronuts.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,9 @@
"import pop_tools\n",
"from dask.distributed import LocalCluster\n",
"import s3fs\n",
"import netCDF4"
"import netCDF4\n",
"\n",
"from module import adjust_pop_grid"
]
},
{
Expand Down Expand Up @@ -157,45 +159,6 @@
"depths = ds_grid.z_t * 0.01"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5d56f6ba-7bdb-43bd-b8ad-badbf5a112b1",
"metadata": {},
"outputs": [],
"source": [
"def adjust_pop_grid(tlon,tlat,field):\n",
" nj = tlon.shape[0]\n",
" ni = tlon.shape[1]\n",
" xL = int(ni/2 - 1)\n",
" xR = int(xL + ni)\n",
"\n",
" tlon = np.where(np.greater_equal(tlon,min(tlon[:,0])),tlon-360.,tlon)\n",
" lon = np.concatenate((tlon,tlon+360.),1)\n",
" lon = lon[:,xL:xR]\n",
"\n",
" if ni == 320:\n",
" lon[367:-3,0] = lon[367:-3,0]+360.\n",
" lon = lon - 360.\n",
" lon = np.hstack((lon,lon[:,0:1]+360.))\n",
" if ni == 320:\n",
" lon[367:,-1] = lon[367:,-1] - 360.\n",
"\n",
" # Trick cartopy into doing the right thing:\n",
" # it gets confused when the cyclic coords are identical\n",
" lon[:,0] = lon[:,0]-1e-8\n",
" \n",
" # Periodicity\n",
" lat = np.concatenate((tlat,tlat),1)\n",
" lat = lat[:,xL:xR]\n",
" lat = np.hstack((lat,lat[:,0:1]))\n",
"\n",
" field = np.ma.concatenate((field,field),1)\n",
" field = field[:,xL:xR]\n",
" field = np.ma.hstack((field,field[:,0:1]))\n",
" return lon,lat,field"
]
},
{
"cell_type": "markdown",
"id": "976ffa95-263e-4d11-bda3-0637f9d28212",
Expand Down
43 changes: 3 additions & 40 deletions notebooks/ocn-phyto-biomass.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,9 @@
"from dask.distributed import LocalCluster\n",
"import s3fs\n",
"import netCDF4\n",
"from datetime import datetime"
"from datetime import datetime\n",
"\n",
"from module import adjust_pop_grid"
]
},
{
Expand Down Expand Up @@ -146,45 +148,6 @@
"depths = ds_grid.z_t * 0.01"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7cf6b5c7-15fb-44a1-bc31-af0666433995",
"metadata": {},
"outputs": [],
"source": [
"def adjust_pop_grid(tlon,tlat,field):\n",
" nj = tlon.shape[0]\n",
" ni = tlon.shape[1]\n",
" xL = int(ni/2 - 1)\n",
" xR = int(xL + ni)\n",
"\n",
" tlon = np.where(np.greater_equal(tlon,min(tlon[:,0])),tlon-360.,tlon)\n",
" lon = np.concatenate((tlon,tlon+360.),1)\n",
" lon = lon[:,xL:xR]\n",
"\n",
" if ni == 320:\n",
" lon[367:-3,0] = lon[367:-3,0]+360.\n",
" lon = lon - 360.\n",
" lon = np.hstack((lon,lon[:,0:1]+360.))\n",
" if ni == 320:\n",
" lon[367:,-1] = lon[367:,-1] - 360.\n",
"\n",
" # Trick cartopy into doing the right thing:\n",
" # it gets confused when the cyclic coords are identical\n",
" lon[:,0] = lon[:,0]-1e-8\n",
" \n",
" # Periodicity\n",
" lat = np.concatenate((tlat,tlat),1)\n",
" lat = lat[:,xL:xR]\n",
" lat = np.hstack((lat,lat[:,0:1]))\n",
"\n",
" field = np.ma.concatenate((field,field),1)\n",
" field = field[:,xL:xR]\n",
" field = np.ma.hstack((field,field[:,0:1]))\n",
" return lon,lat,field"
]
},
{
"cell_type": "markdown",
"id": "e2eda11b-15e6-471f-8d09-e07f62a1710d",
Expand Down
43 changes: 3 additions & 40 deletions notebooks/ocn-phyto-lims.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,9 @@
"import pop_tools\n",
"from dask.distributed import LocalCluster\n",
"import s3fs\n",
"import netCDF4"
"import netCDF4\n",
"\n",
"from module import adjust_pop_grid"
]
},
{
Expand Down Expand Up @@ -145,45 +147,6 @@
"depths = ds_grid.z_t * 0.01"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0b73860c-5a37-42b7-bd8c-7c841937e0b6",
"metadata": {},
"outputs": [],
"source": [
"def adjust_pop_grid(tlon,tlat,field):\n",
" nj = tlon.shape[0]\n",
" ni = tlon.shape[1]\n",
" xL = int(ni/2 - 1)\n",
" xR = int(xL + ni)\n",
"\n",
" tlon = np.where(np.greater_equal(tlon,min(tlon[:,0])),tlon-360.,tlon)\n",
" lon = np.concatenate((tlon,tlon+360.),1)\n",
" lon = lon[:,xL:xR]\n",
"\n",
" if ni == 320:\n",
" lon[367:-3,0] = lon[367:-3,0]+360.\n",
" lon = lon - 360.\n",
" lon = np.hstack((lon,lon[:,0:1]+360.))\n",
" if ni == 320:\n",
" lon[367:,-1] = lon[367:,-1] - 360.\n",
"\n",
" # Trick cartopy into doing the right thing:\n",
" # it gets confused when the cyclic coords are identical\n",
" lon[:,0] = lon[:,0]-1e-8\n",
" \n",
" # Periodicity\n",
" lat = np.concatenate((tlat,tlat),1)\n",
" lat = lat[:,xL:xR]\n",
" lat = np.hstack((lat,lat[:,0:1]))\n",
"\n",
" field = np.ma.concatenate((field,field),1)\n",
" field = field[:,xL:xR]\n",
" field = np.ma.hstack((field,field[:,0:1]))\n",
" return lon,lat,field"
]
},
{
"cell_type": "markdown",
"id": "652bc60d-d17e-4bbb-bfce-2b323281f444",
Expand Down
Loading
Loading