PyCallingAgent is a tool-augmented agent framework that enables function-calling through LLM code generation and provides runtime state management. Unlike traditional JSON-schema approaches, It leverages LLM's inherent coding capabilities to interact with tools through a Python runtime environment, allowing direct access to execution results and runtime state.
- Code-Based Function Calling: Uses LLM's code generation capabilities instead of JSON schemas
- Runtime Environment:
- Inject Python objects
- Register functions as tools
- Access execution results from runtime
- Multi-Turn Conversations: Maintains context and runtime state across multiple interactions
- Flexible LLM Support: Works with various LLM providers through a unified interface
We're actively working on expanding PyCallingAgent's capabilities, including:
- Streaming response support
- Asynchronous execution
- Enhanced test coverage
pip install py-calling-agent
# Clone the repository
git clone https://github.com/acodercat/py-calling-agent.git
cd py-calling-agent
pip install -e .
from py_calling_agent import PyCallingAgent, OpenAILLMEngine
# Initialize LLM engine
llm_engine = OpenAILLMEngine(
model_id="your-model",
api_key="your-api-key",
base_url="your-base-url"
)
# Define tool functions
def add(a: int, b: int) -> int:
"""Add two numbers together"""
return a + b
def multiply(a: int, b: int) -> int:
"""Multiply two numbers together"""
return a * b
# Create agent with functions
agent = PyCallingAgent(
llm_engine,
functions=[add, multiply]
)
# Run calculations
result = agent.run("Calculate 5 plus 3")
print("Result:", result)
from py_calling_agent import PyCallingAgent, OpenAILLMEngine
# Initialize LLM engine
llm_engine = OpenAILLMEngine(
model_id="your-model",
api_key="your-api-key",
base_url="your-base-url"
)
# Define a class with methods
class DataProcessor:
"""A utility class for processing and filtering data collections.
This class provides methods for basic data processing operations such as
sorting, removing duplicates, and filtering based on thresholds.
Example:
>>> processor = DataProcessor()
>>> processor.process_list([3, 1, 2, 1, 3])
[1, 2, 3]
>>> processor.filter_numbers([1, 5, 3, 8, 2], 4)
[5, 8]
"""
def process_list(self, data: list) -> list:
"""Sort a list and remove duplicates"""
return sorted(set(data))
def filter_numbers(self, data: list, threshold: int) -> list:
"""Filter numbers greater than threshold"""
return [x for x in data if x > threshold]
# Prepare context
processor = DataProcessor()
numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5]
objects = {
'processor': processor,
'numbers': numbers,
'processed_data': None,
'filtered_data': None
}
object_descriptions = {
'processor': {
'description': 'Data processing tool with various methods',
'example': 'processed_data = processor.process_list(numbers)'
},
'numbers': {
'description': 'Input list of numbers',
'example': 'filtered_data = processor.filter_numbers(numbers, 5)'
},
'processed_data': {
'description': 'Store processed data in this variable',
'example': 'processed_data = processor.process_list(numbers)'
},
'filtered_data': {
'description': 'Store filtered data in this variable',
'example': 'filtered_data = processor.filter_numbers(numbers, 5)'
}
}
# Create agent
agent = PyCallingAgent(
llm_engine,
objects=objects,
object_descriptions=object_descriptions
)
# Process data
agent.run("Use processor to sort and deduplicate numbers")
processed_data = agent.get_object('processed_data')
print("Processed data:", processed_data)
# Filter data
agent.run("Filter numbers greater than 4")
filtered_data = agent.get_object('filtered_data')
print("Filtered data:", filtered_data)
from py_calling_agent import PyCallingAgent, OpenAILLMEngine, LogLevel
# Initialize LLM engine
llm_engine = OpenAILLMEngine(
model_id="your-model",
api_key="your-api-key",
base_url="your-base-url"
)
# Define tool functions
def calculate_sum(a: int, b: int) -> int:
"""Calculate the sum of two numbers"""
return a + b
# Define data processor class
class DataProcessor:
def process_list(self, data: list) -> list:
"""Sort a list and remove duplicates"""
return sorted(set(data))
# Prepare context
processor = DataProcessor()
numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5]
objects = {
'processor': processor,
'numbers': numbers,
'result': None
}
object_descriptions = {
'processor': {'description': 'Data processing tool'},
'numbers': {'description': 'Input list of numbers'},
'result': {
'description': 'Store results here',
'example': 'result = processor.process_list(numbers)'
}
}
# Create agent with streaming support
agent = PyCallingAgent(
llm_engine,
objects=objects,
object_descriptions=object_descriptions,
functions=[calculate_sum],
log_level=LogLevel.ERROR
)
# Stream the response in real-time with event type handling
for event in agent.stream("Sort the numbers and calculate sum of the first two elements"):
if event.type.name == 'TEXT':
print(event.content, end="", flush=True)
if event.type.name == 'CODE':
print("Executing Code:", event.content)
if event.type.name == 'EXECUTION_RESULT':
print("Execution Result:", event.content)
if event.type.name == 'EXECUTION_ERROR':
print("Execution Error:", event.content)
For more examples, check out the examples directory:
- Basic Usage: Simple function calling
- Object State: Managing runtime objects
- Object Methods: Using class methods
- Multi-Turn: Complex analysis conversations
- Stream: Streaming responses
Contributions are welcome! Please feel free to submit a PR. For more details, see CONTRIBUTING.md.
This project is licensed under the MIT License - see the LICENSE file for details.