Tools for training neural networks on MAVE datasets and running Markov Chain Monte Carlo simulations.
Installation is supported through a combination of conda
and pip
. Here is an example setup that will
install a compatible environment into ./env
and installs the package using cuda 12.4
. See pytorch
and pyg websites for more detailed installation options.
conda create --prefix ./env python==3.9 pandas pytorch torchvision torchaudio pytorch-cuda=12.4 torch-scatter einops mdtraj numpy -c pytorch -c nvidia -c conda-forge
conda activate ./env
conda install pyg -c pyg
pip install triton
mkdir -p ./src
git clone git@github.com:alekepd/mavenets.git ./src
pip install -e ./src
Example scripts are provided in ./src/mavenets/example
. They can be invoked in the shell for
easy usage. For example:
from mavenets.example import run_mlp
run_mlp.scan()
will launch a sample hyperparameter scan over possible multilayer perceptron architectures.