Skip to content

Commit

Permalink
update readme (#18)
Browse files Browse the repository at this point in the history
Co-authored-by: xianyan.xianyanjia <xianyan.xianyanjia@alibaba-inc.com>
  • Loading branch information
SeaOfOcean and SeaOfOcean authored Oct 11, 2023
1 parent 715bd53 commit 81cd20f
Show file tree
Hide file tree
Showing 2 changed files with 18 additions and 4 deletions.
11 changes: 9 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,11 +20,15 @@ A flexible and efficient training framework for large-scale RLHF
---

*Latest News* 🔥
- [2023/08] We officially released ChatLearn! Check out our [documentation](docs/en/chatlearn.md)
- [2023/10] We officially released ChatLearn! Check out our [documentation](docs/en/chatlearn.md).

---

ChatLearn is a flexible and efficient training framework for large-scale RLHF. Chatlearn has the following advantages:
ChatLearn is a flexible and efficient training framework for large-scale RLHF.

![RLHF Flow](docs/images/rlhf.png)

Chatlearn has the following advantages:
1. **User-friendly programming interface**: Users can focus on programming individual models by wrapping a few functions, while the system takes care of resource scheduling, data and control flow transmission, and distributed execution.
2. **Multiple distributed acceleration backends**: Users can use different computation backends for model development, such as Megatron-LM and DeepSpeed.
3. **Hybrid parallel strategies**: Various parallel strategies can be employed, including Data Parallel, Tensor Parallel, Sequence Parallel, Pipeline Parallel, ZeRO, and the combination thereof.
Expand All @@ -39,6 +43,7 @@ Please refer to the [documentation](https://chatlearn.readthedocs.io/en/latest/)

1. [Environment and Code Setup](docs/en/installation.md)
2. [End-to-End Training Tutorial with LLaMA Model](docs/en/tutorial.md)
3. [End-to-End Training Tutorial with BLOOM Model](docs/en/tutorial_bloom.md)

# Supported Models

Expand All @@ -49,6 +54,8 @@ The current ChatLearn framework supports RLHF training for GPT/LLaMA models of a
| GPT (various scales of GPT models) |
| LLaMA (`lmsys/vicuna-13b-v1.3`, `decapoda-research/llama-7b-hf`, `decapoda-research/llama-13b-hf`, `decapoda-research/llama-30b-hf`, `decapoda-research/llama-65b-hf`, etc.) |
| LLaMA2 (`meta-llama/Llama-2-7b-hf`, `meta-llama/Llama-2-13b-hf`) |
| Baichuan (`baichuan-inc/Baichuan-7B`, `baichuan-inc/Baichuan-13B-Base`) |
| BLOOM (`bigscience/bloom-1b1`, `bigscience/bloom-7b1`, `bigscience/bloom`) |

Note: The current performance benchmark is based on the GPT series models.

Expand Down
11 changes: 9 additions & 2 deletions README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,15 @@
---

*最新进展* 🔥
- [2023/08] 正式开源 ChatLearn,更多介绍请参考我们的 [文档](docs/zh/chatlearn.md)
- [2023/10] 正式开源 ChatLearn,更多介绍请参考我们的 [文档](docs/zh/chatlearn.md)

---

ChatLearn 是一个灵活易用、大规模 RLHF 高效训练框架。ChatLearn 通过对模型计算逻辑的抽象,解耦了模型和计算 backend、分布式策略的绑定,提供灵活的资源调度机制,可以支持灵活的资源分配和并行调度策略。ChatLearn的优点总结如下:
ChatLearn 是一个灵活易用、大规模 RLHF 高效训练框架。ChatLearn 通过对模型计算逻辑的抽象,解耦了模型和计算 backend、分布式策略的绑定,提供灵活的资源调度机制,可以支持灵活的资源分配和并行调度策略。

![RLHF Flow](docs/images/rlhf.png)

ChatLearn的特点如下:
1. **易用的编程接口**: ChatLearn提供通用的编程抽象,用户只需要封装几个函数即可完成模型构造。用户只需要专注于单模型的编程,系统负责资源调度、数据流传输、控制流传输、分布式执行等。
2. **多种分布式加速引擎**: 用户可以使用不同的计算 backend 进行模型建模,如 Megatron-LM、DeepSpeed 等。
3. **Hybrid 并行策略**: ChatLearn 支持各种并行策略组合:Data Parallel/Tensor Parallel/Sequence Parallel/Pipeline Parallel/ZeRO 及其组合。
Expand All @@ -36,6 +40,7 @@ ChatLearn 是一个灵活易用、大规模 RLHF 高效训练框架。ChatLearn

1. [环境和代码准备](docs/zh/installation.md)
2. [基于 LLaMA 模型的端到端训练教程](docs/zh/tutorial.md)
3. [基于 BLOOM 模型的端到端训练教程](docs/zh/tutorial_bloom.md)

# 支持的模型

Expand All @@ -46,6 +51,8 @@ ChatLearn 是一个灵活易用、大规模 RLHF 高效训练框架。ChatLearn
| GPT (GPT 系列各种规模的模型) |
| LLaMA (`lmsys/vicuna-13b-v1.3`, `decapoda-research/llama-7b-hf`, `decapoda-research/llama-13b-hf`, `decapoda-research/llama-30b-hf`, `decapoda-research/llama-65b-hf`, etc.) |
| LLaMA2 (`meta-llama/Llama-2-7b-hf`, `meta-llama/Llama-2-13b-hf`) |
| Baichuan (`baichuan-inc/Baichuan-7B`, `baichuan-inc/Baichuan-13B-Base`) |
| BLOOM (`bigscience/bloom-1b1`, `bigscience/bloom-7b1`, `bigscience/bloom`) |

注:当前的性能 benchmark 均基于 GPT 系列模型。

Expand Down

0 comments on commit 81cd20f

Please sign in to comment.