Skip to content

A repository for training and evaluating object detection models using the KITTI dataset with TensorFlow.

License

Notifications You must be signed in to change notification settings

ankur-tutlani/KITTI-ObjectDetection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

KITTI-ObjectDetection

This repository contains code for training and evaluating object detection models using the KITTI dataset with TensorFlow.

Dataset

The KITTI dataset is used for various vision tasks such as stereo, optical flow, and visual odometry. This repository focuses on the object detection dataset, which includes monocular images and 3D bounding boxes.

  • Training Images: 6347
  • Validation Images: 423
  • Testing Images: 711

Setup

Install the required packages:

pip install torch torchvision torchaudio diffusers transformers tensorflow_datasets

Usage

  1. Load the Dataset:
import tensorflow_datasets as tfds
dataset, info = tfds.load('kitti', with_info=True)
  1. Preprocess the Data:
def preprocess(data):
    image = data['image']
    image = tf.image.resize_with_pad(image, 128, 128)
    image = tf.cast(image, tf.float32) / 255.0
    labels = tf.reduce_sum(tf.one_hot(data['objects']['type'], depth=8), axis=0)
    return image, labels
  1. Train the Model:
from tensorflow.keras import layers, models
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(8, activation='sigmoid')
])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
  1. Evaluate the Model:
test_loss, test_acc = model.evaluate(test_dataset)
print(f'Test accuracy: {test_acc}')

References

https://www.cvlibs.net/datasets/kitti/

Citation

@inproceedings{Geiger2012CVPR, author = {Andreas Geiger and Philip Lenz and Raquel Urtasun}, title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite}, booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2012} }

About

A repository for training and evaluating object detection models using the KITTI dataset with TensorFlow.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages