Skip to content

How to use AWS IoT Greengrass V2 for Image classification and Video Analytics Pipelines

License

Notifications You must be signed in to change notification settings

aws-samples/aws-iot-greengrass-v2-deploy-nvidia-deepstream

Using Image Inference and Video Analytics Pipelines with Greengrass V2 and NVIDIA Jetson

This repository will give you concrete examples to get starting using GreengrassV2 to build Image Inferencing and Video Analytics Pipelines

Technologies used:

  • GreengrassV2
  • NVIDIA Deepstream 5.0
  • Sagemaker NEO DLR

Prerequisites

Image Inference

PLEASE NOTE: This deployment may install/modify components on your Jetson device. It will install some python packages outside of a virtual environment. This is because python-opencv is specially installed as part of Jetpack 4.4 and the debian package may run for a long period of time and not succesfully complete (numpy can also take a long time to install).

replace GreengrassCore where mentioned run:

 cd ~/GreengrassCore
 aws greengrassv2 create-component-version --inline-recipe fileb://recipes/aws.greengrass.JetsonDLRImageClassification-1.0.0.json
 aws greengrassv2 create-component-version --inline-recipe fileb://recipes/variant.Jetson.DLR-1.0.0.json
 aws greengrassv2 create-component-version --inline-recipe fileb://recipes/variant.Jetson.ImageClassification.ModelStore-1.0.0.json

deploy:

  • Go to AWS Iot Core Console (https://console.aws.amazon.com/iot/home)
  • Choose Greengrass -> Components
  • You should see the components you created via the AWS CLI.
  • Choose any one of the three components you created
  • Choose 'Deploy'
  • Choose 'Create new deployment' then choose 'Next'
  • For 'Name' give the deployment a name
  • For 'Target type' enter the name of your device core (https://console.aws.amazon.com/iot/home?region=us-east-1#/greengrass/v2/cores)
  • Choose 'Next'
  • On the 'Select Components' screen, make sure to select all 3 of the components you created and Choose 'Next'
  • On the 'Configure Components' screen, choose Next
  • On the 'Configure advanced settings' screen, choose Next
  • On the 'Review' screen choose 'Deploy'

success: Now let's go to the MQTT Test client in the AWS Console to see our inference working:

  • Inside of IoT Core console, choose 'Test' then 'MQTT Test Client'
  • Subscribe to topic 'demo/topic'
  • You should see messages looking like the following:
{
  "message": "{\"class\":\"Chihuahua\",\"confidence\":\"17.977331\"}",
  "timestamp": "2021-01-06T18:30:05"
}

troubleshooting:

  • if you get a failure, check the 'greengrass.log' file on your Jetson device in /greengrass/v2/logs/greengrass.log and /greengrass/v2/logs/aws.greengrass.JetsonDLRImageClassification.log

Deepstream Video Analytica Pipelines

License

This library is licensed under the MIT-0 License. See the LICENSE file.

About

How to use AWS IoT Greengrass V2 for Image classification and Video Analytics Pipelines

Topics

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •