Authors: Hongyu Guo, Yoshua Bengio, Shengchao Liu
[Paper] [Datasets on HuggingFace] [Checkpoints on HuggingFace]
Setup the anaconda
wget https://repo.continuum.io/archive/Anaconda3-2019.10-Linux-x86_64.sh
bash Anaconda3-2019.10-Linux-x86_64.sh -b
export PATH=$PWD/anaconda3/bin:$PATH
Start with some basic packages.
conda create -n AssembleFlow python=3.9
conda activate AssembleFlow
conda install -y numpy networkx scikit-learn
conda install -y -c conda-forge rdkit
conda install -y pytorch==2.2 pytorch-cuda=12.1 -c pytorch -c nvidia
conda install -y -c pyg -c conda-forge pyg=2.5
conda install -y -c pyg pytorch-scatter
conda install -y -c pyg pytorch-sparse
conda install -y -c pyg pytorch-cluster
pip install pymatgen
pip install easydict
pip install -e .
COD-Cluster17 is obtained from the CrystalFlow project, and it is available at this HuggingFace link.
A demo python script is:
python main.py \
--dataset=COD_5000 --epochs=20 --seed=0 \
--model=AssembleFlow_Atom --verbose
If we are using the pretrained checkpoints, then we can specify:
...... --output_model_dir=pretrained_path --load_pretrained=1
Please check the scripts
folder for the detailed hyperparameters.
We provide the checkpoints at this HuggingFace link. Notice that some hyperparameters will give NaN results, so we just skip them.
Feel free to cite this work if you find it useful to you!
@inproceedings{
guo2025assembleflow,
title={AssembleFlow: Rigid Flow Matching with Inertial Frames for Molecular Assembly},
author={Hongyu Guo and Yoshua Bengio and Shengchao Liu},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=jckKNzYYA6}
}