Skip to content

Latest commit

 

History

History
77 lines (63 loc) · 2.47 KB

README.md

File metadata and controls

77 lines (63 loc) · 2.47 KB

Multi-Modal UAV Detection, Classification, and Tracking Algorithm

CVPR 2024 UG2 Challenge Champion

Logo


Table of Contents
  1. Installation
  2. Online Demo
  3. Usage
  4. Downloads
  5. Benchmarking
  6. Acknowledgement
  7. Citation
## Installation
(Recommended Environment)

Our method has been tested on python 3.10, CUDA>=11.6. The simplest way to install all dependences is to use anaconda and pip in the following steps:

conda create -n MMUAV python=3.10
conda activate MMUAV
conda install -c "nvidia/label/cuda-11.6.0" cuda-toolkit
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge
pip install -r requirements.txt

Drone Detection and Classification

Preprocess the dataset by Yolov9

Install Yolov9 Dependency

pip install yolov9/requirements.txt

And download pretrained weight of Yolov9 under ./yolov9. Then Prepare the dataset utilizing the zero-shot UAV detection by Yolov9

python3 yolov9/detect.py --source $SOURCE --img 640 --device 0 --weights './yolov9-e.pt' --name $OUTPUT --num_kf 5 --kf_int 50 --save-crop

Replace $SOURCE and $OUTPUT to the source and desired output directories of the target trajectory. num_kf is the maximum number of keyframe selected from the trajectory. kf_int is the interval threshold between each keyframe to prevent selecting similar keyframes. save-crop will save the cropped image for detected drones, necessary for the training of efficientnet.