Skip to content

Commit

Permalink
Merge pull request #300 from bformby/main
Browse files Browse the repository at this point in the history
Updating fabric_gpu example notebook
  • Loading branch information
kthare10 authored Aug 13, 2024
2 parents 5fdcc26 + a5bee4a commit 1ff593d
Show file tree
Hide file tree
Showing 2 changed files with 182 additions and 10 deletions.
84 changes: 74 additions & 10 deletions fabric_examples/fablib_api/fabric_all_gpus/fabric_gpu.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -219,11 +219,13 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"distro='ubuntu2204'\n",
"version='12.2'\n",
"version='12.6'\n",
"architecture='x86_64'\n",
"\n",
"# install prerequisites\n",
Expand All @@ -237,6 +239,16 @@
" print(f\"++++ {command}\")\n",
" stdout, stderr = node.execute(command)\n",
"\n",
"print(\"Installing PyTorch...\")\n",
"commands = [\n",
" 'sudo apt install python3-pip -y',\n",
" 'pip3 install torch',\n",
" 'pip3 install torchvision'\n",
"]\n",
"for command in commands:\n",
" print(f\"++++ {command}\")\n",
" stdout, stderr = node.execute(command)\n",
"\n",
"print(f\"Installing CUDA {version}\")\n",
"commands = [\n",
" f'wget https://developer.download.nvidia.com/compute/cuda/repos/{distro}/{architecture}/cuda-keyring_1.1-1_all.deb',\n",
Expand Down Expand Up @@ -298,6 +310,13 @@
"print(f\"stdout: {stdout}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### CUDA Hello World Example"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -360,7 +379,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"If you see `Hello World!`, the CUDA program ran successfully. `World!` was computed on the GPU from an array of offsets being summed with the string `Hello `, and the resut was printed to stdout.\n",
"If you see `Hello World!`, the CUDA program ran successfully. `World!` was computed on the GPU from an array of offsets being summed with the string `Hello `, and the result was printed to stdout.\n",
"\n",
"### Congratulations! You have now successfully run a program on a FABRIC GPU!"
]
Expand All @@ -369,26 +388,71 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Cleanup Your Experiment"
"### PyTorch CIFAR10 Classifier Example"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, let's follow the \"Training a Classifer\" tutorial from PyTorch to train an image classifier on the CIFAR10 dataset\n",
"\n",
"`pytorch_example`\n",
"\n",
"*Source: https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html*"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"metadata": {},
"outputs": [],
"source": [
"fablib.delete_slice(slice_name)"
"node.upload_file('./pytorch_example.py', 'pytorch_example.py')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, run the python script to train and test the classifier."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
"source": [
"stdout, stderr = node.execute(\"python3 pytorch_example.py\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you see `Finished Training` followed by the accuracy of the classifier, then the script ran successfully.\n",
"\n",
"### Congratulations! You have now successfully trained a PyTorch classifier on a FABRIC GPU!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Cleanup Your Experiment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"fablib.delete_slice(slice_name)"
]
}
],
"metadata": {
Expand All @@ -407,7 +471,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
"version": "3.11.8"
}
},
"nbformat": 4,
Expand Down
108 changes: 108 additions & 0 deletions fabric_examples/fablib_api/fabric_all_gpus/pytorch_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Assuming that we are on a CUDA machine, this should print a CUDA device:
print("Device: ",device)

# --- Load and normalize CIFAR10 ---
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

batch_size = 4

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# --- Define a Convolutional Neural Network ---
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x


net = Net().to(device)

# --- Define a Loss function and optimizer ---
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# --- Train the network ---
for epoch in range(2): # loop over the dataset multiple times

running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data[0].to(device), data[1].to(device)

# zero the parameter gradients
optimizer.zero_grad()

# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
running_loss = 0.0

print('Finished Training')
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)

# --- Test the network on the test data ---
dataiter = iter(testloader)
images, labels = next(dataiter)

net = Net()
net.load_state_dict(torch.load(PATH))
outputs = net(images)
_, predicted = torch.max(outputs, 1)

correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
for data in testloader:
images, labels = data
# calculate outputs by running images through the network
outputs = net(images)
# the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()

print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')

0 comments on commit 1ff593d

Please sign in to comment.