Skip to content

Epistasis network centralities that incorporate prior knowledge

License

Notifications You must be signed in to change notification settings

insilico/PriorKnowledgeEpistasisRank

Repository files navigation

PriorKnowledgeEpistasisRank

EpistasisRank and EpistasisKatz: Co-expression and epistasis-expression network centralities that incorporate prior knowledge

Authors: Saeid Parvandeh and Brett McKinney

How to install required packages

Install Script

How to find vignettes

There are two vignettes, pathway.Rmd and classification.Rmd. The first one shows the steps of creating pathaway enrichment and how prior knowledge improves Reactome Pathway enrichment for MDD, and the second shows the effect on nested-CV classification accuracies of gene-wise prior knowledge in network centrality algorithms.

Accuracy plot

Training accuracy (Cambridge data) and independent validation accuracy (Japan data) with centrality feature selection without prior knowledge (left panels) and with prior knowledge (right panels). Top: co-expression net-work centrality feature selection methods, PageRank (PR) and Katz. Bottom row: expression-epistasis network centrality methods, EpistasisRank (ER) and EpistasisKatz (EK). Accuracies computed by xgboosted trees with nested cross-validation. Xgboost accuracies without feature selection also shown (squares).

Accuracy plots

About

Epistasis network centralities that incorporate prior knowledge

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages