A Python toolkit for simulating and visualizing fundamental stochastic processes.
-
Galton Board Simulation: Visualizes how random processes can lead to a Normal distribution (Central Limit Theorem). Outputs a histogram image.
-
Pseudo Random Walks: Simulates particle diffusion on a line, showing the distribution approaching Normal over time. Outputs path and distribution plots.
-
Markov Chain Steady-State Analysis: Calculates long-term equilibrium probabilities for systems (like city migration) using various numerical methods (Power Iteration, Eigenvalue, Linear System, Monte Carlo). Outputs results to the console.
_0 ••••••••• ••••••••• ••••••••• ••••••••• ••••••••• ••••••••• ••••••••• ••••••••• •••••••••
🍎🍎🍎🥝🥝🥝💙💙💙🍎🍎🍎🥝🥝🥝💙💙💙🍎🍎🍎🥝🥝🥝💙💙💙
( TRMNL~/CLI$ ) •:• pip install { [ (((...pckgs))) ] }
( TRMNL~/CLI$ ) •::•• `${' '}_${[ python mchs_prws_mntp.py ]}`
( TRMNL~/CLI$ ) •:::••• `${" ⚆ "}_${[ 🅿️🆖, 🅿️🆖, 🅿️🆖, 🅿️🆖, 🅿️🆖, 🅿️🆖 ]}`