- System Setup
- On Convolutions
- Indexing
- Numerical Stability
- Shapes
- Tensor Contraction (More Generalized Matrix Multiplication)
tf.estimator
API- Load A saved_model and Run Inference (in Python)
- Input Features!
tf.train.Example
andtf.train.SequenceExample
- Misc
- Install CUDA 10.0 on Ubuntu 18.04 LTS GPU server:
# 1. Install NVIDIA driver either through "Additional Drivers", or:
$ sudo apt install --no-install-recommends nvidia-driver-430
# Reboot and then check that GPUs are visible using the command: nvidia-smi.
# 2. Add NVIDIA package repositories
$ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.0.130-1_amd64.deb
$ sudo dpkg -i cuda-repo-ubuntu1804_10.0.130-1_amd64.deb
$ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
$ sudo apt update
$ wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
$ sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
$ sudo apt update
# 3. Install development and runtime libraries.
$ sudo apt install --no-install-recommends \
cuda-10-0 \
libcudnn7=7.6.2.24-1+cuda10.0 \
libcudnn7-dev=7.6.2.24-1+cuda10.0
# 4. Install TensorRT. Requires that libcudnn7 is installed above.
$ sudo apt install -y --no-install-recommends libnvinfer5=5.1.5-1+cuda10.0 \
libnvinfer-dev=5.1.5-1+cuda10.0
- Install Tensorflow 2.0 GPU version:
$ python3 -m pip install --upgrade pip
$ python3 -m pip install --user tensorflow-gpu
-
Setup SSH server on GPU server:
- Install OpenSSH server:
$ sudo apt install openssh-server
. - Add port forwarding rule for port 22.
- Install OpenSSH server:
-
Setup SSH client on our ultra book:
- Create SSH key:
$ ssh-keygen -t rsa -b 4096
. - Install SSH key on the GPU server as an authorized key:
$ ssh-id-copy <user>@<server-ip>
. - Now we can connect to the GPU server by:
$ ssh -i <ssh-key> <user>@<server-ip>
.
- Create SSH key:
-
Add PyCharm remote Python interpreter on GPU server via SSH.
-
Happy machine learning!
- Typically there are two options for
padding
:SAME
: Make sure result has same spatial shape as input tensor, this often requires padding 0's to input tensor.VALID
: No paddings please, only use valid points . Result can have different spatial shape.
- Tensorflow by default performs centered convolution (kernel is centered around current point). With
k
: kernel size,d
: dilation rate, then extended kernel sizek' = d * (k - 1) + 1
. For each spatial dimension, convolution at indexi
is computed using points between indices (inclusive)[i - (k' - 1) // 2, i + k' // 2]
. - Causal convolution uses points between indices
[i - d * (k - 1), i]
, a simple solution is to padd * (k - 1)
of 0's at the beginning of that dimension then perform a normal convolution withVALID
padding. - Convolution kernel has shape
[spatial_dim[0], ..., spatial_dim[n - 1], num_input_channels, num_output_channels]
. For each output channelk
,output[..., k] = sum_over_i {input[..., i] * kernel[..., i, k]}
, here*
is convolution operator.
tf.gather_nd(params, indices)
retrieves slices fromparams
byindices
. The rule is simple: only the last dimension ofindices
does sliceparams
, and that dimension is "replaced" with those slices. It's easy to see that:indices.shape[-1] <= rank(params)
: The last dimension ofindices
must be no greater than the rank ofparams
.- Result tensor shape is
indices.shape[:-1] + params.shape[indices.shape[-1]:]
, example:
# params has shape [4, 5, 6]. params = tf.reshape(tf.range(0, 120), [4, 5, 6]) # indices has shape [3, 2]. indices = tf.constant([[2, 3], [0, 1], [1, 2]], dtype=tf.int32) # slices has shape [3, 6]. slices = tf.gather_nd(params, indices)
tf.gather_nd
and Numpy fancy indexing:x[indices]
==tf.gather_nd(x, zip(*indices))
;tf.gather_nd(x, indices)
==x[zip(*indices)]
. Wherex
is Numpy array andindices
is indexing array (dim > 1).
Inf
morphs toNaN
while plugged into back-prop (chain rule).- Watch out!
tf.where
Can Spawn NaN in Gradients If either branch intf.where
contains Inf/NaN then it produces NaN in gradients, e.g.:
log_s = tf.constant([-100., 100.], dtype=tf.float32)
# Computes 1.0 / exp(log_s), in a numerically robust way.
inv_s = tf.where(log_s >= 0.,
tf.exp(-log_s), # Creates Inf when -log_s is large.
        1. / (tf.exp(log_s) + 1e-6)) # tf.exp(log_s) is Inf with large log_s.
grad_log_s = tf.gradients(inv_s, [log_s])
with tf.Session() as sess:
inv_s, grad_log_s = sess.run([inv_s, grad_log_s])
  print(inv_s) # [ 1.00000000e+06 3.78350585e-44]
  print(grad_log_s) # [array([ nan, nan], dtype=float32)]
tensor.shape
returns tensor's static shape, while the graph is being built.tensor.shape.as_list()
returns the static shape as a integer list.tensor.shape[i].value
returns the static shape's i-th dimension size as an integer.tf.shape(t)
returns t's run-time shape as a tensor.- An example:
x = tf.placeholder(tf.float32, shape=[None, 8]) # x shape is non-deterministic while building the graph.
print(x.shape) # Outputs static shape (?, 8).
shape_t = tf.shape(x)
with tf.Session() as sess:
print(sess.run(shape_t, feed_dict={x: np.random.random(size=[4, 8])})) # Outputs run-time shape (4, 8).
- [] (empty square brackets) as a shape denotes a scalar (0 dim). E.g. tf.FixedLenFeature([], ..) is a scalar feature.
- Broadcasting on two arrays starts with the trailing dimensions, and works its way backward to the leading dimensions. E.g.
A (4d array): 8 x 1 x 6 x 1
B (3d array): 7 x 1 x 5
Result (4d array): 8 x 7 x 6 x 5
# Matrix multiplication
tf.einsum('ij,jk->ik', m0, m1) # output[i, k] = sum_j m0[i, j] * m1[j, k]
# Dot product
tf.einsum('i,i->', u, v) # output = sum_i u[i]*v[i]
# Outer product
tf.einsum('i,j->ij', u, v) # output[i, j] = u[i]*v[j]
# Transpose
tf.einsum('ij->ji', m) # output[j, i] = m[i,j]
# Batch matrix multiplication
tf.einsum('aij,jk->aik', s, t) # out[a, i, k] = sum_j s[a, i, j] * t[j, k]
# Batch tensor contraction
tf.einsum('nhwc,nwcd->nhd', s, t) # out[n, h, d] = sum_w_c s[n, h, w, c] * t[n, w, c, d]
- A typical input_fn (used for train/eval) for tf.estimator API:
def make_input_fn(mode, ...):
"""Return input_fn for train/eval in tf.estimator API.
Args:
mode: Must be tf.estimator.ModeKeys.TRAIN or tf.estimator.ModeKeys.EVAL.
...
Returns:
The input_fn.
"""
def _input_fn():
"""The input function.
Returns:
features: A dict of {'feature_name': feature_tensor}.
labels: A tensor of labels.
"""
if mode == tf.estimator.ModeKeys.TRAIN:
features = ...
labels = ...
elif mode == tf.estimator.ModeKeys.EVAL:
features = ...
labels = ...
else:
raise ValueError(mode)
return features, labels
return _input_fn
- A typical model_fn for tf.estimator API:
def make_model_fn(...):
"""Return model_fn to build a tf.estimator.Estimator.
Args:
...
Returns:
The model_fn.
"""
def _model_fn(features, labels, mode):
"""Model function.
Args:
features: The first item returned from the input_fn for train/eval, a dict of {'feature_name': feature_tensor}. If mode is ModeKeys.PREDICT, same as in serving_input_receiver_fn.
labels: The second item returned from the input_fn, a single Tensor or dict. If mode is ModeKeys.PREDICT, labels=None will be passed.
mode: Optional. Specifies if this training, evaluation or prediction. See ModeKeys.
"""
if mode == tf.estimator.ModeKeys.PREDICT:
# Calculate the predictions.
predictions = ...
# For inference/prediction outputs.
export_outputs = {
tf.saved_model.signature_constants.PREDICT_METHOD_NAME: tf.estimator.export.PredictOutput({
'output_1': predict_output_1,
'output_2': predict_output_2,
...
}),
}
...
else:
predictions = None
export_outputs = None
if (mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL):
loss = ...
else:
loss = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = ...
# Can use tf.group(..) to group multiple train_op as a single train_op.
else:
train_op = None
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
export_outputs=export_outputs)
return _model_fn
- Use tf.estimator.Estimator to export a saved_model:
# serving_features must match features in model_fn when mode == tf.estimator.ModeKeys.PREDICT.
serving_features = {'serving_input_1': tf.placeholder(...), 'serving_input_2': tf.placeholder(...), ...}
estimator.export_savedmodel(export_dir,
tf.estimator.export.build_raw_serving_input_receiver_fn(serving_features))
- Use tf.contrib.learn.Experiment to export a saved_model:
# serving_features must match features in model_fn when mode == tf.estimator.ModeKeys.PREDICT.
serving_features = {'serving_input_1': tf.placeholder(...), 'serving_input_2': tf.placeholder(...), ...}
export_strategy = tf.contrib.learn.utils.make_export_strategy(tf.estimator.export.build_raw_serving_input_receiver_fn(serving_features))
expriment = tf.contrib.learn.Experiment(..., export_strategies=[export_strategy], ...)
with tf.Session(...) as sess:
# Load saved_model MetaGraphDef from export_dir.
meta_graph_def = tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], export_dir)
# Get SignatureDef for serving (here PREDICT_METHOD_NAME is used as export_outputs key in model_fn).
sigs = meta_graph_def.signature_def[tf.saved_model.signature_constants.PREDICT_METHOD_NAME]
# Get the graph for retrieving input/output tensors.
g = tf.get_default_graph()
# Retrieve serving input tensors, keys must match keys defined in serving_features (when building input receiver fn).
input_1 = g.get_tensor_by_name(sigs.inputs['input_1'].name)
input_2 = g.get_tensor_by_name(sigs.inputs['input_2'].name)
...
# Retrieve serving output tensors, keys must match keys defined in ExportOutput (e.g. PredictOutput) in export_outputs.
output_1 = g.get_tensor_by_name(sigs.outputs['output_1'].name)
output_2 = g.get_tensor_by_name(sigs.outputs['output_2'].name)
...
# Run inferences.
outputs_values = sess.run([output_1, output_2, ...], feed_dict={input_1: ..., input_2: ..., ...})
- A tf.train.Example is roughly a map of {feature_name: value_list}.
- A tf.train.SequenceExample is roughly a
tf.train.Example
plus a map of {feature_name: list_of_value_lists}. - Build a tf.train.Example in Python:
# ==================== Build in one line ====================
example = tf.train.Example(features=tf.train.Features(feature={
'bytes_values': tf.train.Feature(
bytes_list=tf.train.BytesList(value=[bytes_feature])),
'float_values': tf.train.Feature(
float_list=tf.train.FloatList(value=[float_feature])),
'int64_values': tf.train.Feature(
int64_list=tf.train.Int64List(value=[int64_feature])),
...
}))
# ==================== OR progressivly ====================
example = tf.train.Example()
example.features.feature['bytes_feature'].bytes_list.value.extend(bytes_values)
example.features.feature['float_feature'].float_list.value.extend(float_values)
example.features.feature['int64_feature'].int64_list.value.extend(int64_values)
...
- Build a tf.train.SequenceExample in Python:
sequence_example = tf.train.SequenceExample()
# Populate context data.
sequence_example.context.feature[
'context_bytes_values_1'].bytes_list.value.extend(bytes_values)
sequence_example.context.feature[
'context_float_values_1'].float_list.value.extend(float_values)
sequence_example.context.feature[
'context_int64_values_1'].int64_list.value.extend(int64_values)
...
# Populate sequence data.
feature_list_1 = sequence_example.feature_lists.feature_list['feature_list_1']
# Add tf.train.Feature to feature_list_1.
feature_1 = feature_list_1.feature.add()
# Populate feature_1, e.g. feature_1.float_list.value.extend(float_values)
# Add tf.train.Feature to feature_list_1, if any.
...
- To parse a SequenceExample:
tf.parse_single_sequence_example(serialized,
context_features={
'context_feature_1': tf.FixedLenFeature([], dtype=...),
...
},
sequence_features={
# For 'sequence_features_1' shape, [] results with [?] and [k] results with [?, k], where:
# ?: timesteps, i.e. number of tf.Train.Feature in 'sequence_features_1' list, can be variable.
# k: number of elements in each tf.Train.Feature in 'sequence_features_1'.
'sequence_features_1': tf.FixedLenSequenceFeature([], dtype=...),
...
},)
- Write tfrecords to sharded files. Reading data from multiple input files can increase I/O throughput in TF:
import multiprocessing
from concurrent import futures
def write_tf_records(file_path, tf_records):
"""Writes TFRecord (Example or SequenceExample) data to output file.
:param file_path: the full output file path, can add `@N` at the end that
specifies total number of shards, e.g. /data/training.tfrecords@10.
:param tf_records: a list or tuple of `tf.train.Example` or
`tf.train.SequenceExample` instances.
"""
def _write_data_to_file(file_path, tf_records):
"""Writes data into specified output file path.
:param file_path: full path of output file.
:param tf_records: a list of Example or SequenceExample instances.
"""
with tf.python_io.TFRecordWriter(file_path) as writer:
for tf_record in tf_records:
writer.write(tf_record.SerializeToString())
def _get_shards_paths(file_path):
"""Gets (shard) file paths by parsing from provided file path.
:param file_path: file path that may contain shard syntax "@N".
:return: a list of file paths.
"""
shard_char_idx = file_path.rfind('@')
# No shards specified.
if shard_char_idx == -1:
return [file_path]
num_shards = int(file_path[shard_char_idx + 1:])
if num_shards <= 0:
raise ValueError('Number of shards must be a positive integer.')
prefix = file_path[:shard_char_idx]
return ['{}-{}-of-{}'.format(prefix, i, num_shards) for i
in range(num_shards)]
if not isinstance(tf_records, list) and not isinstance(tf_records, tuple):
raise TypeError('tf_records must be a list or tuple.')
tf_records = list(tf_records)
shards_paths = _get_shards_paths(file_path)
if len(shards_paths) > len(tf_records):
raise ValueError('More data than file shards.')
with futures.ThreadPoolExecutor(
max_workers=multiprocessing.cpu_count() - 1) as executor:
for shard_id, file_path in enumerate(shards_paths):
executor.submit(_write_data_to_file, file_path,
tf_records[shard_id::len(shards_paths)])
- Don't Forget to Reset Default Graph in Jupyter Notebook If you forgot to reset default Tensorflow graph (or create a new graph) in a Jupyter notebook cell, and run that cell for a few times then you may get weird results.
- Visualize Tensorflow Graph in Jupyter Notebook
import numpy as np
from IPython import display
def strip_consts(graph_def, max_const_size=32):
"""Strip large constant values from graph_def."""
strip_def = tf.GraphDef()
for n0 in graph_def.node:
n = strip_def.node.add()
n.MergeFrom(n0)
if n.op == 'Const':
tensor = n.attr['value'].tensor
size = len(tensor.tensor_content)
if size > max_const_size:
tensor.tensor_content = "<stripped {} bytes>".format(size)
return strip_def
def show_graph(graph_def, max_const_size=32):
"""Visualize TensorFlow graph."""
if hasattr(graph_def, 'as_graph_def'):
graph_def = graph_def.as_graph_def()
strip_def = strip_consts(graph_def, max_const_size=max_const_size)
code = """
<script>
function load() {{
document.getElementById("{id}").pbtxt = {data};
}}
</script>
<link rel="import" href="https://tensorboard.appspot.com/tf-graph
-basic.build.html" onload=load()>
<div style="height:600px">
<tf-graph-basic id="{id}"></tf-graph-basic>
</div>
""".format(data=repr(str(strip_def)), id='graph' + str(np.random.rand()))
iframe = """
<iframe seamless style="width:1200px;height:620px;border:0" srcdoc="{}"></iframe>
""".format(code.replace('"', '"'))
display.display(display.HTML(iframe))
Then call show_graph(tf.get_default_graph())
to show in your Jupyter/IPython notebook.