Skip to content

Convert real-time bidding (RTB) models to the AppNexus Bonsai language

License

Notifications You must be signed in to change notification settings

markovianhq/bonspy

Repository files navigation

Bonspy

PyPI version Build Status codecov [Join the chat at https://gitter.im/markovianhq/Lobby] (https://gitter.im/markovianhq/Lobby)

Bonspy converts bidding trees from various input formats to the Bonsai bidding language of AppNexus.

As intermediate format bonspy constructs a NetworkX graph from which it produces the Bonsai language output. Bidding trees may also be constructed directly in this NetworkX format (see first example below).

At present bonspy provides a converter from trained sklearn logistic regression classifiers with categorical, one-hot encoded features to the intermediate NetworkX format (see second example below).

In combination with our AppNexus API wrapper nexusadspy it is also straightforward to check your bidding tree for syntactical errors and upload it for real-time bidding (third example below).

This package was developed and tested on Python 3.5. However, the examples below have been tested successfully in Python 2.7.

Versions 0.9.2 and higher will no longer support Python 2.7.

Installation

Installation as regular library

Install the latest release from PyPI:

$ pip install bonspy

To install the latest master branch commit of bonspy:

$ pip install -e git+git@github.com:markovianhq/bonspy.git@master#egg=bonspy

To install a specific commit, e.g. 97c41e9:

$ pip install -e git+git@github.com:markovianhq/bonspy.git@97c41e9#egg=bonspy

Installation for development

To install bonspy for local development you may want to create a virtual environment. Assuming you use Continuum Anaconda, create a new virtual environment as follows:

$ conda create --name bonspy python=3 -y

Activate the environment:

$ source activate bonspy

Install the requirements:

$ pip install -r requirements.txt

Now install bonspy in development mode:

$ python setup.py develop

To run the tests, install these additional packages:

$ pip install -r requirements_test.txt

Now run the tests:

$ py.test bonspy --flake8

Example: NetworkX tree to Bonsai output

import networkx as nx

from bonspy import BonsaiTree


g = nx.DiGraph()

g.add_node(0, split='segment', state={})
g.add_node(1, split='age', state={'segment': 12345})
g.add_node(2, split='age', state={'segment': 67890})
g.add_node(3, split='country', state={'segment': 12345, 'age': (None, 10.)})
g.add_node(4, split='country', state={'segment': 12345, 'age': (10., None)})
g.add_node(5, split='country', state={'segment': 67890, 'age': (None, 10.)})
g.add_node(6, split='country', state={'segment': 67890, 'age': (10., None)})
g.add_node(7, is_leaf=True, output=0.10, state={'segment': 12345, 'age': (None, 10.), 'country': ('GB', 'DE')})
g.add_node(8, is_leaf=True, output=0.20, state={'segment': 12345, 'age': (None, 10.), 'country': ('US', 'BR')})
g.add_node(9, is_leaf=True, output=0.10, state={'segment': 12345, 'age': (10., None), 'country': ('GB', 'DE')})
g.add_node(10, is_leaf=True, output=0.20, state={'segment': 12345, 'age': (10., None), 'country': ('US', 'BR')})
g.add_node(11, is_leaf=True, output=0.10, state={'segment': 67890, 'age': (None, 10.), 'country': ('GB', 'DE')})
g.add_node(12, is_leaf=True, output=0.20, state={'segment': 67890, 'age': (None, 10.), 'country': ('US', 'BR')})
g.add_node(13, is_leaf=True, output=0.10, state={'segment': 67890, 'age': (10., None), 'country': ('GB', 'DE')})
g.add_node(14, is_leaf=True, output=0.20, state={'segment': 67890, 'age': (10., None), 'country': ('US', 'BR')})
g.add_node(15, is_default_leaf=True, output=0.05, state={})
g.add_node(16, is_default_leaf=True, output=0.05, state={'segment': 12345})
g.add_node(17, is_default_leaf=True, output=0.05, state={'segment': 67890})
g.add_node(18, is_default_leaf=True, output=0.05, state={'segment': 12345, 'age': (None, 10.)})
g.add_node(19, is_default_leaf=True, output=0.05, state={'segment': 12345, 'age': (10., None)})
g.add_node(20, is_default_leaf=True, output=0.05, state={'segment': 67890, 'age': (None, 10.)})
g.add_node(21, is_default_leaf=True, output=0.05, state={'segment': 67890, 'age': (10., None)})

g.add_edge(0, 1, value=12345, type='assignment')
g.add_edge(0, 2, value=67890, type='assignment')
g.add_edge(1, 3, value=(None, 10.), type='range')
g.add_edge(1, 4, value=(10., None), type='range')
g.add_edge(2, 5, value=(None, 10.), type='range')
g.add_edge(2, 6, value=(10., None), type='range')
g.add_edge(3, 7, value=('GB', 'DE'), type='membership')
g.add_edge(3, 8, value=('US', 'BR'), type='membership')
g.add_edge(4, 9, value=('GB', 'DE'), type='membership')
g.add_edge(4, 10, value=('US', 'BR'), type='membership')
g.add_edge(5, 11, value=('GB', 'DE'), type='membership')
g.add_edge(5, 12, value=('US', 'BR'), type='membership')
g.add_edge(6, 13, value=('GB', 'DE'), type='membership')
g.add_edge(6, 14, value=('US', 'BR'), type='membership')
g.add_edge(0, 15)
g.add_edge(1, 16)
g.add_edge(2, 17)
g.add_edge(3, 18)
g.add_edge(4, 19)
g.add_edge(5, 20)
g.add_edge(6, 21)

tree = BonsaiTree(g)

This tree looks as follows (note the image below is old: geo has been replaced with country, and UK with GB):

tree_example

Note that non-leaf nodes track the next user variable to be split on in their split attribute while the current choice of user features is tracked in their state attribute. Leaves designate their output (the bid) in their output attribute.

The Bonsai text representation of the above tree is stored in its .bonsai attribute:

print(tree.bonsai)

prints out

if segment[12345]:
    switch segment[12345].age:
        case (.. 10):
            if country in ("GB","DE"):
                0.1000
            elif country in ("US","BR"):
                0.2000
            else:
                0.0500
        case (11 ..):
            if country in ("GB","DE"):
                0.1000
            elif country in ("US","BR"):
                0.2000
            else:
                0.0500
        default:
            0.0500
elif segment[67890]:
    switch segment[67890].age:
        case (.. 10):
            if country in ("GB","DE"):
                0.1000
            elif country in ("US","BR"):
                0.2000
            else:
                0.0500
        case (11 ..):
            if country in ("GB","DE"):
                0.1000
            elif country in ("US","BR"):
                0.2000
            else:
                0.0500
        default:
            0.0500
else:
    0.0500

Example: Sklearn logistic regression classifier to Bonsai output

This example is old and has not been tested lately!

from bonspy import LogisticConverter
from bonspy import BonsaiTree

features = ['segment', 'age', 'geo']

vocabulary = {
    'segment=12345': 0,
    'segment=67890': 1,
    'age=0': 2,
    'age=1': 3,
    'geo=UK': 4,
    'geo=DE': 5,
    'geo=US': 6,
    'geo=BR': 7
}

weights = [.1, .2, .15, .25, .1, .1, .2, .2]
intercept = .4

buckets = {
    'age': {
        '0': (None, 10),
        '1': (10, None)
    }
}

types = {
    'segment': 'assignment',
    'age': 'range',
    'geo': 'assignment'
}

conv = LogisticConverter(features=features, vocabulary=vocabulary,
                         weights=weights, intercept=intercept,
                         types=types, base_bid=2., buckets=buckets)

tree = BonsaiTree(conv.graph)

print(tree.bonsai)

Prints out

if segment 67890:
    if segment 67890 age > 10:
        if geo="US":
            1.4815
        elif geo="UK":
            1.4422
        elif geo="BR":
            1.4815
        elif geo="DE":
            1.4422
        else:
            1.4011
    elif segment 67890 age <= 10:
        if geo="US":
            1.4422
        elif geo="UK":
            1.4011
        elif geo="BR":
            1.4422
        elif geo="DE":
            1.4011
        else:
            1.3584
    else:
        1.2913
elif segment 12345:
    if segment 12345 age > 10:
        if geo="US":
            1.4422
        elif geo="DE":
            1.4011
        elif geo="UK":
            1.4011
        elif geo="BR":
            1.4422
        else:
            1.3584
    elif segment 12345 age <= 10:
        if geo="US":
            1.4011
        elif geo="DE":
            1.3584
        elif geo="UK":
            1.3584
        elif geo="BR":
            1.4011
        else:
            1.3140
    else:
        1.2449
else:
    1.1974

Example: Uploading the Bonsai output to AppNexus

Use our nexusadspy library to send the encoded tree to the AppNexus parser and check for any syntactical errors:

from nexusadspy import AppnexusClient

check_tree = {
                 "custom-model-parser": {
                     "model_text": tree.bonsai_encoded
                 }
             }

with AppnexusClient('.appnexus_auth.json') as client:
    r = client.request('custom-model-parser', 'POST', data=check_tree)

If the AppNexus API does not return any errors for our tree we can now upload it as follows:

custom_model = {
                "custom_model": {
                    "name": "Insert tree name (visible in the AppNexus advertiser UI)",
                    "member_id":  # add your integer member ID,
                    "advertiser_id": # add your integer advertiser ID,
                    "custom_model_structure": "decision_tree",
                    "model_output": "bid",
                    "model_text": encoded
                    }
                }

r = client.request('custom-model', 'POST', data=custom_model)

Check the response r for the integer identifier assigned to your bidding tree by AppNexus. You will use this identifier to set the uploaded tree as bidder for your advertising campaigns in the AppNexus advertiser UI.

For more details see https://wiki.appnexus.com/display/console/AppNexus+Programmable+Bidder.