Skip to content

ntnn/dataparse

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

77 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

dataparse

Too often I have to work with these annyances:

  1. CSV files that require to rewrite parsing for varying types from string
  2. Excel files that report erroneous types
  3. Unreliable APIs reporting e.g. integer as floats
  4. Unreliable, (almost) undocumented APIs that return an object or a list depending on the number of results

etc.pp.

To solve these annoyances dataparse was born.

A onestop shop that makes it easy to retrieve information from varying sources and handles the transformation between types.

General use

APIs

If an API does not offer an OpenAPI spec it is left to the consumer to implement a client. Usually it is enough to have a look at the results with curl, define structs with tags accordingly and then json.Unmarshal into those.

Sometimes these APIs (especially SGML-to-JSON-wrapped and to a lesser extend Java-backed APIs) report values in wild inconsistency, e.g. reporting integers as floats or numbers as strings.

In those cases dataparse.Map can help:

// Execute the request to the API
resp, err := http.Get("https://outdated-but-important.api/path/to/endpoint")
if err != nil {
    return err
}

// Read the returned JSON data into a dataparse.Map
m, err := dataparse.FromJsonSingle(resp.Body)
if err != nil {
    return err
}

i, err := m.Int("integer_value")
if err != nil {
    return err
}

log.Printf("integer value: %d")

In this case the API can return the integer as integer, string or float and dataparse will transform it into the desired integer.

Unmarshalling into structs

Another useful utility is unmarshalling data into structs, e.g. when reading CSVs:

Assuming a CSV file with the headers hostname,ip,logsize:

type myData struct {
    Hostname string  `dataparse:"hostname"`
    IPAddress net.IP `dataparse:"ip"`
    Logsize int      `dataparse:"logsize"`
}

// If the CSV file has no headers they can also be passed like this:
// dataparse.From("...", dataparse.WithHeaders("hostname", "ip", "logsize"))
mapCh, errCh, err := dataparse.From("/path/to/data.csv")
if err != nil {
    return err
}

for mapCh != nil || errCh != nil {
    select {
    case m, ok := <- mapCh:
        if !ok {
            mapCh = nil
            continue
        }
        // Read the CSV data into a struct to utilize the discrete types.
        d := myData{}
        if err := m.To(&d); err != nil {
            log.Errorf("error reading data: %v | %#v", err, m)
            continue
        }
        // handle d further
    case err, ok := <- errCh:
        if !ok {
            errCh = nil
            continue
        }
        log.Errorf("error from dataparse: %v", err)
    }
}

Releases

No releases published

Packages

No packages published

Languages