You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -24,22 +24,22 @@ Open-source software toolkit for optimizing and deploying deep learning models.
24
24
-**Broad Platform Compatibility**: Reduce resource demands and efficiently deploy on a range of platforms from edge to cloud. OpenVINO™ supports inference on CPU (x86, ARM), GPU (OpenCL capable, integrated and discrete) and AI accelerators (Intel NPU).
25
25
-**Community and Ecosystem**: Join an active community contributing to the enhancement of deep learning performance across various domains.
26
26
27
-
Check out the [OpenVINO Cheat Sheet](https://docs.openvino.ai/2024/_static/download/OpenVINO_Quick_Start_Guide.pdf) and [Key Features](https://docs.openvino.ai/2024/about-openvino/key-features.html) for a quick reference.
27
+
Check out the [OpenVINO Cheat Sheet](https://docs.openvino.ai/2025/_static/download/OpenVINO_Quick_Start_Guide.pdf) and [Key Features](https://docs.openvino.ai/2025/about-openvino/key-features.html) for a quick reference.
28
28
29
29
30
30
## Installation
31
31
32
-
[Get your preferred distribution of OpenVINO](https://docs.openvino.ai/2024/get-started/install-openvino.html) or use this command for quick installation:
32
+
[Get your preferred distribution of OpenVINO](https://docs.openvino.ai/2025/get-started/install-openvino.html) or use this command for quick installation:
33
33
34
34
```sh
35
35
pip install -U openvino
36
36
```
37
37
38
-
Check [system requirements](https://docs.openvino.ai/2024/about-openvino/system-requirements.html) and [supported devices](https://docs.openvino.ai/2024/about-openvino/compatibility-and-support/supported-devices.html) for detailed information.
38
+
Check [system requirements](https://docs.openvino.ai/2025/about-openvino/system-requirements.html) and [supported devices](https://docs.openvino.ai/2025/about-openvino/compatibility-and-support/supported-devices.html) for detailed information.
39
39
40
40
## Tutorials and Examples
41
41
42
-
[OpenVINO Quickstart example](https://docs.openvino.ai/2024/get-started.html) will walk you through the basics of deploying your first model.
42
+
[OpenVINO Quickstart example](https://docs.openvino.ai/2025/get-started.html) will walk you through the basics of deploying your first model.
43
43
44
44
Learn how to optimize and deploy popular models with the [OpenVINO Notebooks](https://github.com/openvinotoolkit/openvino_notebooks)📚:
45
45
-[Create an LLM-powered Chatbot using OpenVINO](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/llm-chatbot/llm-chatbot-generate-api.ipynb)
@@ -48,7 +48,7 @@ Learn how to optimize and deploy popular models with the [OpenVINO Notebooks](ht
48
48
-[Multimodal assistant with LLaVa and OpenVINO](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/llava-multimodal-chatbot/llava-multimodal-chatbot-genai.ipynb)
49
49
-[Automatic speech recognition using Whisper and OpenVINO](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/whisper-asr-genai/whisper-asr-genai.ipynb)
50
50
51
-
Discover more examples in the [OpenVINO Samples (Python & C++)](https://docs.openvino.ai/2024/learn-openvino/openvino-samples.html) and [Notebooks (Python)](https://docs.openvino.ai/2024/learn-openvino/interactive-tutorials-python.html).
51
+
Discover more examples in the [OpenVINO Samples (Python & C++)](https://docs.openvino.ai/2025/learn-openvino/openvino-samples.html) and [Notebooks (Python)](https://docs.openvino.ai/2025/learn-openvino/interactive-tutorials-python.html).
52
52
53
53
Here are easy-to-follow code examples demonstrating how to run PyTorch and TensorFlow model inference using OpenVINO:
54
54
@@ -96,11 +96,11 @@ data = np.random.rand(1, 224, 224, 3)
96
96
output = compiled_model({0: data})
97
97
```
98
98
99
-
OpenVINO supports the CPU, GPU, and NPU [devices](https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes.html) and works with models from PyTorch, TensorFlow, ONNX, TensorFlow Lite, PaddlePaddle, and JAX/Flax [frameworks](https://docs.openvino.ai/2024/openvino-workflow/model-preparation.html). It includes [APIs](https://docs.openvino.ai/2024/api/api_reference.html) in C++, Python, C, NodeJS, and offers the GenAI API for optimized model pipelines and performance.
99
+
OpenVINO supports the CPU, GPU, and NPU [devices](https://docs.openvino.ai/2025/openvino-workflow/running-inference/inference-devices-and-modes.html) and works with models from PyTorch, TensorFlow, ONNX, TensorFlow Lite, PaddlePaddle, and JAX/Flax [frameworks](https://docs.openvino.ai/2025/openvino-workflow/model-preparation.html). It includes [APIs](https://docs.openvino.ai/2025/api/api_reference.html) in C++, Python, C, NodeJS, and offers the GenAI API for optimized model pipelines and performance.
100
100
101
101
## Generative AI with OpenVINO
102
102
103
-
Get started with the OpenVINO GenAI [installation](https://docs.openvino.ai/2024/get-started/install-openvino/install-openvino-genai.html) and refer to the [detailed guide](https://docs.openvino.ai/2024/openvino-workflow-generative/generative-inference.html) to explore the capabilities of Generative AI using OpenVINO.
103
+
Get started with the OpenVINO GenAI [installation](https://docs.openvino.ai/2025/get-started/install-openvino/install-openvino-genai.html) and refer to the [detailed guide](https://docs.openvino.ai/2025/openvino-workflow-generative/generative-inference.html) to explore the capabilities of Generative AI using OpenVINO.
104
104
105
105
Learn how to run LLMs and GenAI with [Samples](https://github.com/openvinotoolkit/openvino.genai/tree/master/samples) in the [OpenVINO™ GenAI repo](https://github.com/openvinotoolkit/openvino.genai). See GenAI in action with Jupyter notebooks: [LLM-powered Chatbot](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/llm-chatbot/README.md) and [LLM Instruction-following pipeline](https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/llm-question-answering/README.md).
106
106
@@ -122,7 +122,7 @@ Learn how to run LLMs and GenAI with [Samples](https://github.com/openvinotoolki
122
122
### Integrations
123
123
124
124
-[🤗Optimum Intel](https://github.com/huggingface/optimum-intel) - grab and use models leveraging OpenVINO within the Hugging Face API.
125
-
-[Torch.compile](https://docs.openvino.ai/2024/openvino-workflow/torch-compile.html) - use OpenVINO for Python-native applications by JIT-compiling code into optimized kernels.
125
+
-[Torch.compile](https://docs.openvino.ai/2025/openvino-workflow/torch-compile.html) - use OpenVINO for Python-native applications by JIT-compiling code into optimized kernels.
126
126
-[OpenVINO LLMs inference and serving with vLLM](https://docs.vllm.ai/en/stable/getting_started/openvino-installation.html) - enhance vLLM's fast and easy model serving with the OpenVINO backend.
127
127
-[OpenVINO Execution Provider for ONNX Runtime](https://onnxruntime.ai/docs/execution-providers/OpenVINO-ExecutionProvider.html) - use OpenVINO as a backend with your existing ONNX Runtime code.
128
128
-[LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/openvino/) - build context-augmented GenAI applications with the LlamaIndex framework and enhance runtime performance with OpenVINO.
@@ -133,7 +133,7 @@ Check out the [Awesome OpenVINO](https://github.com/openvinotoolkit/awesome-open
133
133
134
134
## Performance
135
135
136
-
Explore [OpenVINO Performance Benchmarks](https://docs.openvino.ai/2024/about-openvino/performance-benchmarks.html) to discover the optimal hardware configurations and plan your AI deployment based on verified data.
136
+
Explore [OpenVINO Performance Benchmarks](https://docs.openvino.ai/2025/about-openvino/performance-benchmarks.html) to discover the optimal hardware configurations and plan your AI deployment based on verified data.
137
137
138
138
## Contribution and Support
139
139
@@ -149,7 +149,7 @@ You can ask questions and get support on:
@@ -25,5 +25,5 @@ This phase takes 2-4 weeks and involves scoping the backlog, prioritizing it, an
25
25
- After Code Freeze, the testing team can perform final regression testing to ensure that recent changes have not introduced new bugs and that the software meets the required quality standards.
26
26
27
27
### Distribution
28
-
- OpenVINO has different types of build distribution: Regular releases, Long-Term Support, Pre-release releases, Nightly builds. Read more here: [OpenVINO Release Policy](https://docs.openvino.ai/2024/about-openvino/release-notes-openvino/release-policy.html)
28
+
- OpenVINO has different types of build distribution: Regular releases, Long-Term Support, Pre-release releases, Nightly builds. Read more here: [OpenVINO Release Policy](https://docs.openvino.ai/2025/about-openvino/release-notes-openvino/release-policy.html)
29
29
- Different distribution channels are supported. Explore different options here: [OpenVINO Download](https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/download.html)
0 commit comments