Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CPU] fix most performance regression of some models on Atom #23232

Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 8 additions & 7 deletions src/plugins/intel_cpu/src/nodes/conv.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -589,13 +589,14 @@ void Convolution::getSupportedDescriptors() {
in_candidate = std::make_shared<DnnlBlockedMemoryDesc>(inputShape, inputDataType, ncsp);
out_candidate = std::make_shared<DnnlBlockedMemoryDesc>(outputShape, outputDataType, ncsp);
createDescriptor({ in_candidate }, { out_candidate });
} else if (IC < 4) {
in_candidate = std::make_shared<DnnlBlockedMemoryDesc>(inputShape, inputDataType, ncsp);
out_candidate = std::make_shared<DnnlBlockedMemoryDesc>(outputShape, outputDataType, nCsp16c);
createDescriptor({ in_candidate }, { out_candidate });
out_candidate = std::make_shared<DnnlBlockedMemoryDesc>(outputShape, outputDataType, nCsp8c);
createDescriptor({ in_candidate }, { out_candidate });
} else {
} else {
if (IC < 4) {
in_candidate = std::make_shared<DnnlBlockedMemoryDesc>(inputShape, inputDataType, ncsp);
out_candidate = std::make_shared<DnnlBlockedMemoryDesc>(outputShape, outputDataType, nCsp16c);
createDescriptor({ in_candidate }, { out_candidate });
out_candidate = std::make_shared<DnnlBlockedMemoryDesc>(outputShape, outputDataType, nCsp8c);
createDescriptor({ in_candidate }, { out_candidate });
}
in_candidate = std::make_shared<DnnlBlockedMemoryDesc>(inputShape, inputDataType, nCsp16c);
out_candidate = std::make_shared<DnnlBlockedMemoryDesc>(outputShape, outputDataType, nCsp16c);
createDescriptor({ in_candidate }, { out_candidate });
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -451,6 +451,14 @@ const std::vector<InputShape>& inputShapesPlain2Blocked2d() {
{ 1, 1, 9, 9}
}
},
{
//dynamic shape
{ -1, 2, -1, {1, 200} },
{ //target static shapes
{ 2, 2, 7, 7 },
{ 1, 2, 9, 9}
}
},
{
//dynamic shape
{ -1, 3, -1, {1, 200} },
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -105,36 +105,39 @@ INSTANTIATE_TEST_SUITE_P(Conv_2D_FP32_dilated_empty_fusing, ConvolutionLayerCPUT
::testing::Values(empty_plugin_config)),
ConvolutionLayerCPUTest::getTestCaseName);

const std::vector<CPUSpecificParams> CPUParams_2D_plain_to_blocked = {
const std::vector<CPUSpecificParams> CPUParams_2D_small_IC = {
conv_sse42_2D,
conv_sse42_plain_to_blocked_2D,
conv_avx2_plain_to_blocked_2D,
conv_avx512_plain_to_blocked_2D,
};

INSTANTIATE_TEST_SUITE_P(smoke_Conv_2D_PlainToBlocked_FP32, ConvolutionLayerCPUTest,
const std::vector<InputShape>& inputShapesSmallIC2d = inputShapesPlain2Blocked2d();

INSTANTIATE_TEST_SUITE_P(smoke_Conv_2D_SmallIC_FP32, ConvolutionLayerCPUTest,
::testing::Combine(
::testing::Combine(
convParams_ExplicitPadding_2D(),
::testing::Values(ElementType::f32),
::testing::Values(ElementType::undefined),
::testing::Values(ElementType::undefined),
::testing::ValuesIn(inputShapesPlain2Blocked2d()),
::testing::ValuesIn(inputShapesSmallIC2d),
::testing::Values(ov::test::utils::DEVICE_CPU)),
::testing::ValuesIn(filterCPUInfo(CPUParams_2D_plain_to_blocked)),
::testing::ValuesIn(filterCPUInfo(CPUParams_2D_small_IC)),
::testing::Values(emptyFusingSpec),
::testing::Values(empty_plugin_config)),
ConvolutionLayerCPUTest::getTestCaseName);

INSTANTIATE_TEST_SUITE_P(Conv_PlainToBlocked_2D_FP32_dilated, ConvolutionLayerCPUTest,
INSTANTIATE_TEST_SUITE_P(smoke_Conv_SmallIC_2D_FP32_dilated, ConvolutionLayerCPUTest,
::testing::Combine(
::testing::Combine(
convParams_ExplicitPadding_2D_dilated(),
::testing::Values(ElementType::f32),
::testing::Values(ElementType::undefined),
::testing::Values(ElementType::undefined),
::testing::ValuesIn(inputShapesPlain2Blocked2d()),
::testing::ValuesIn(inputShapesSmallIC2d),
::testing::Values(ov::test::utils::DEVICE_CPU)),
::testing::ValuesIn(filterCPUInfo(CPUParams_2D_plain_to_blocked)),
::testing::ValuesIn(filterCPUInfo(CPUParams_2D_small_IC)),
::testing::Values(emptyFusingSpec),
::testing::Values(empty_plugin_config)),
ConvolutionLayerCPUTest::getTestCaseName);
Expand Down Expand Up @@ -397,4 +400,4 @@ INSTANTIATE_TEST_SUITE_P(smoke_Conv_Large_Filter, ConvolutionLayerCPUTest,
} // namespace
} // namespace Convolution
} // namespace test
} // namespace ov
} // namespace ov
Original file line number Diff line number Diff line change
Expand Up @@ -407,7 +407,8 @@ INSTANTIATE_TEST_SUITE_P(smoke_Conv_1D_I8, ConvolutionLayerCPUTest,
::testing::Values(empty_plugin_config)),
ConvolutionLayerCPUTest::getTestCaseName);

const std::vector<CPUSpecificParams> CPUParams_1D_plain_to_blocked = {
const std::vector<CPUSpecificParams> CPUParams_1D_small_IC = {
conv_sse42_1D,
conv_sse42_plain_to_blocked_1D,
conv_avx2_plain_to_blocked_1D,
conv_avx512_plain_to_blocked_1D,
Expand All @@ -426,6 +427,14 @@ std::vector<InputShape> inputShapesPlain2Blocked1d = {
}
},
{
//dynamic shapes
{-1, 2, {1, 200}},
{ //target static shapes
{2, 2, 7},
{1, 2, 9}
}
},
{
//dynamic shapes
{-1, 3, {1, 200}},
{ //target static shapes
Expand All @@ -435,16 +444,18 @@ std::vector<InputShape> inputShapesPlain2Blocked1d = {
}
};

INSTANTIATE_TEST_SUITE_P(smoke_Conv_1D_PlainToBlocked_FP32, ConvolutionLayerCPUTest,
std::vector<InputShape> inputShapesSmallIC1d = inputShapesPlain2Blocked1d;

INSTANTIATE_TEST_SUITE_P(smoke_Conv_1D_SmallIC_FP32, ConvolutionLayerCPUTest,
::testing::Combine(
::testing::Combine(
convParams_ExplicitPadding_1D,
::testing::Values(ElementType::f32),
::testing::Values(ElementType::undefined),
::testing::Values(ElementType::undefined),
::testing::ValuesIn(inputShapesPlain2Blocked1d),
::testing::ValuesIn(inputShapesSmallIC1d),
::testing::Values(ov::test::utils::DEVICE_CPU)),
::testing::ValuesIn(filterCPUInfo(CPUParams_1D_plain_to_blocked)),
::testing::ValuesIn(filterCPUInfo(CPUParams_1D_small_IC)),
::testing::Values(emptyFusingSpec),
::testing::Values(empty_plugin_config)),
ConvolutionLayerCPUTest::getTestCaseName);
Expand Down Expand Up @@ -808,4 +819,4 @@ INSTANTIATE_TEST_SUITE_P(Conv_3D_Jit_Planar_FP32_dilated, ConvolutionLayerCPUTes
} // namespace
} // namespace Convolution
} // namespace test
} // namespace ov
} // namespace ov
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
#include <vector>

#include "snippets/fake_quantize_decomposition_test.hpp"
#include "openvino/runtime/system_conf.hpp"

using namespace ov::test::snippets;

Expand Down Expand Up @@ -120,11 +121,12 @@ INSTANTIATE_TEST_SUITE_P(
::testing::Combine(
::testing::ValuesIn(testValuesLegacyFuse),
::testing::ValuesIn(operations),
// reorder (nChw[16|8]c) + MaxPool + reorder(nhwc) + Convolution(with internal weight reordering) + reorder(nchw)
::testing::Values(std::pair<size_t, size_t>{5, 0}),
// if ISA has avx512, conv node will use brgconv, there will be a extra reorder(nhwc)
// for brg, reorder (nChw[16|8]c) + MaxPool + reorder(nhwc) + Convolution(with internal weight reordering) + reorder(nchw)
// for no brg, reorder (nChw[16|8]c) + MaxPool + Convolution(with internal weight reordering) + reorder(nchw)
::testing::Values(ov::with_cpu_x86_avx512_core() ? std::pair<size_t, size_t>{5, 0} : std::pair<size_t, size_t>{4, 0}),
::testing::Values(ov::test::utils::DEVICE_CPU)),
FakeQuantizeDecompositionTest::getTestCaseName);

} // namespace legacyFuse

} // namespace
Loading