Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PT FE] Support aten::masked_select for pytorch models #26162

Merged
merged 6 commits into from
Aug 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions src/frontends/pytorch/src/op/masked_select.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
#include "openvino/frontend/pytorch/node_context.hpp"
#include "utils.hpp"

namespace ov {
namespace frontend {
namespace pytorch {
namespace op {

using namespace ov::op;

OutputVector translate_masked_select(const NodeContext& context) {
// aten::masked_select(Tensor self, Tensor mask, Tensor source) -> Tensor
num_inputs_check(context, 2, 2);
auto data = context.get_input(0);
auto mask = context.get_input(1);
auto res = masked_select(context, data, mask);
return {res};
};

} // namespace op
} // namespace pytorch
} // namespace frontend
} // namespace ov
2 changes: 2 additions & 0 deletions src/frontends/pytorch/src/op_table.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,7 @@ OP_CONVERTER(translate_loop);
OP_CONVERTER(translate_lstm);
OP_CONVERTER(translate_masked_fill);
OP_CONVERTER(translate_masked_scatter);
OP_CONVERTER(translate_masked_select);
OP_CONVERTER(translate_max);
OP_CONVERTER(translate_maximum);
OP_CONVERTER(translate_max_poolnd);
Expand Down Expand Up @@ -528,6 +529,7 @@ const std::unordered_map<std::string, CreatorFunction> get_supported_ops_ts() {
{"aten::lt", op::translate_1to1_match_2_inputs_align_types<opset10::Less>},
{"aten::masked_fill", op::translate_masked_fill},
{"aten::masked_scatter", op::translate_masked_scatter},
{"aten::masked_select", op::translate_masked_select},
{"aten::matmul", op::translate_1to1_match_2_inputs<opset10::MatMul>},
{"aten::max", op::translate_max},
{"aten::mv", op::translate_1to1_match_2_inputs<opset10::MatMul>},
Expand Down
11 changes: 11 additions & 0 deletions src/frontends/pytorch/src/utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,13 @@
#include "openvino/op/add.hpp"
#include "openvino/op/broadcast.hpp"
#include "openvino/op/concat.hpp"
#include "openvino/op/constant.hpp"
#include "openvino/op/convert_promote_types.hpp"
#include "openvino/op/divide.hpp"
#include "openvino/op/gather.hpp"
#include "openvino/op/gather_nd.hpp"
#include "openvino/op/mod.hpp"
#include "openvino/op/non_zero.hpp"
#include "openvino/op/range.hpp"
#include "openvino/op/reduce_prod.hpp"
#include "openvino/op/reshape.hpp"
Expand All @@ -22,6 +25,7 @@
#include "openvino/op/slice.hpp"
#include "openvino/op/squeeze.hpp"
#include "openvino/op/subtract.hpp"
#include "openvino/op/transpose.hpp"
#include "openvino/op/unsqueeze.hpp"
#include "openvino/util/log.hpp"
#include "pt_framework_node.hpp"
Expand Down Expand Up @@ -592,6 +596,13 @@ Output<Node> concat_list_from_inputs(const NodeContext& context, size_t begin, s
return concat;
}

Output<Node> masked_select(const NodeContext& context, const Output<Node>& data, const Output<Node>& mask) {
auto input_order = context.mark_node(v0::Constant::create(element::i32, Shape{2}, {1, 0}));
auto nonzero = context.mark_node(std::make_shared<v3::NonZero>(mask));
auto masked_id = context.mark_node(std::make_shared<v1::Transpose>(nonzero, input_order));
return context.mark_node(std::make_shared<v8::GatherND>(data, masked_id));
}

} // namespace pytorch
} // namespace frontend
} // namespace ov
2 changes: 2 additions & 0 deletions src/frontends/pytorch/src/utils.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -121,6 +121,8 @@ Output<Node> masked_fill(ov::pass::NodeRegistry& rg,

Output<Node> concat_list_from_inputs(const NodeContext& context, size_t begin, size_t end);

Output<Node> masked_select(const NodeContext& context, const Output<Node>& data, const Output<Node>& mask);

namespace op {
template <OutputVector (*T)(const NodeContext&), size_t idx = 0>
OutputVector inplace_op(const NodeContext& context) {
Expand Down
62 changes: 62 additions & 0 deletions tests/layer_tests/pytorch_tests/test_masked_select.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
# Copyright (C) 2018-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import numpy as np
import torch
from packaging.version import parse as parse_version
import pytest

from pytorch_layer_test_class import PytorchLayerTest


class TestMaskedSelect(PytorchLayerTest):
def _prepare_input(self, mask_select='ones', mask_dtype=bool, input_dtype=float):
input_shape = [1, 10]
mask = np.zeros(input_shape).astype(mask_dtype)
if mask_select == 'ones':
mask = np.ones(input_shape).astype(mask_dtype)
if mask_select == 'random':
idx = np.random.choice(10, 5)
mask[:, idx] = 1
return (np.random.randn(1, 10).astype(input_dtype), mask)

def create_model(self):
import torch

class aten_masked_select(torch.nn.Module):
def __init__(self):
super(aten_masked_select, self).__init__()

def forward(self, x, mask):
return x.masked_select(mask)

ref_net = None

return aten_masked_select(), ref_net, "aten::masked_select"

@pytest.mark.parametrize(
"mask_select", ['zeros', 'ones', 'random'])
@pytest.mark.parametrize("input_dtype", [np.float32, np.float64, int, np.int32])
@pytest.mark.nightly
@pytest.mark.precommit
def test_masked_select(self, mask_select, input_dtype, ie_device, precision, ir_version):
self._test(*self.create_model(),
ie_device, precision, ir_version,
dynamic_shapes=False,
trace_model=True,
kwargs_to_prepare_input={'mask_select': mask_select, 'mask_dtype': bool, "input_dtype": input_dtype})

@pytest.mark.skipif(parse_version(torch.__version__) >= parse_version("2.1.0"), reason="pytorch 2.1 and above does not support nonboolean mask")
@pytest.mark.parametrize(
"mask_select", ['zeros', 'ones', 'random'])
@pytest.mark.parametrize("input_dtype", [np.float32, np.float64, int, np.int32])
@pytest.mark.parametrize("mask_dtype", [np.uint8, np.int32, np.float32])
@pytest.mark.nightly
@pytest.mark.precommit
def test_masked_select_non_bool_mask(self, mask_select, mask_dtype, input_dtype, ie_device, precision, ir_version):
self._test(*self.create_model(),
ie_device, precision, ir_version,
dynamic_shapes=False,
trace_model=True,
kwargs_to_prepare_input={'mask_select': mask_select, 'mask_dtype': mask_dtype, "input_dtype": input_dtype})

Loading