Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added support for aten::randperm and aten::polar #29585

Open
wants to merge 15 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 11 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions src/frontends/pytorch/src/op/polar.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
#include "openvino/op/cos.hpp"
#include "openvino/op/sin.hpp"
#include "openvino/op/multiply.hpp"
#include "openvino/op/concat.hpp"
#include "openvino/frontend/complex_type_mark.hpp"
#include "openvino/op/convert.hpp"
#include "utils.hpp"

namespace ov {
namespace frontend {
namespace pytorch {
namespace op {

using namespace ov::op;

OutputVector translate_polar(const NodeContext& context) {
num_inputs_check(context, 2, 3);
auto abs = context.get_input(0);
auto angle = context.get_input(1);
auto real = context.mark_node(std::make_shared<v1::Multiply>(abs,context.mark_node(std::make_shared<v0::Cos>(angle))));
auto imag = context.mark_node(std::make_shared<v1::Multiply>(abs,context.mark_node(std::make_shared<v0::Sin>(angle))));
auto complex_concat = context.mark_node(std::make_shared<v0::Concat>(OutputVector{real, imag}, -1));
// wrap the tensor with ComplexTypeMark to flag it as complex for later operations.
auto complex_tensor = context.mark_node(std::make_shared<ComplexTypeMark>(complex_concat));
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
auto complex_concat = context.mark_node(std::make_shared<v0::Concat>(OutputVector{real, imag}, -1));
// wrap the tensor with ComplexTypeMark to flag it as complex for later operations.
auto complex_tensor = context.mark_node(std::make_shared<ComplexTypeMark>(complex_concat));
// wrap the tensor with ComplexTypeMark to flag it as complex for later operations.
auto complex_tensor = context.mark_node(std::make_shared<ComplexTypeMark>(real, imag));

Instead of concat you can pass the real and imaginary parts to complex mark.

return {complex_tensor};
}

} // namespace op
} // namespace pytorch
} // namespace frontend
} // namespace ov
48 changes: 48 additions & 0 deletions src/frontends/pytorch/src/op/randperm.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
#include "openvino/op/topk.hpp"
#include "openvino/op/random_uniform.hpp"
#include "openvino/frontend/pytorch/node_context.hpp"
#include "openvino/op/constant.hpp"
#include "utils.hpp"
#include "openvino/op/shape_of.hpp"

namespace ov {
namespace frontend {
namespace pytorch {
namespace op {

using namespace ov::op;

OutputVector translate_randperm(const NodeContext& context) {
auto num_inputs = context.get_input_size();
int64_t n = context.const_input<int64_t>(0);
int dtype_value = 4;
if (num_inputs == 1) {
} else if (num_inputs == 2) {
if (!context.input_is_none(1)) {
dtype_value = context.const_input<int>(1);
OPENVINO_ASSERT(dtype_value == 4, "Only dtype value 4 (int64) is supported for aten::randperm, got: ", dtype_value);
}
} else if (num_inputs == 5) {
if (!context.input_is_none(1)) {
dtype_value = context.const_input<int>(1);
OPENVINO_ASSERT(dtype_value == 4, "Only dtype value 4 (int64) is supported for aten::randperm, got: ", dtype_value);
}
} else {
PYTORCH_OP_CONVERSION_CHECK(false, "Unexpected number of inputs for aten::randperm: ", num_inputs);
}
if (n == 0) {
return {context.mark_node(v0::Constant::create(element::i64, Shape{0},std::vector<int64_t>{}))};}
auto shape = v0::Constant::create(element::i64, Shape{1}, {n});
auto min_val = v0::Constant::create(element::f32, Shape{}, {0.0f});
auto max_val = v0::Constant::create(element::f32, Shape{}, {1.0f});
auto random_tensor = context.mark_node(std::make_shared<v8::RandomUniform>(shape, min_val, max_val, element::f32));
const int64_t axis = 0;
auto k = v0::Constant::create(element::i64, Shape{}, {n});
auto topk = context.mark_node(std::make_shared<v11::TopK>(random_tensor, k, axis, ov::op::TopKMode::MIN, ov::op::TopKSortType::SORT_VALUES, element::i64, false));
return {topk->output(1)};
}

} // namespace op
} // namespace pytorch
} // namespace frontend
} // namespace ov
4 changes: 4 additions & 0 deletions src/frontends/pytorch/src/op_table.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -186,6 +186,7 @@ OP_CONVERTER(translate_permute);
OP_CONVERTER(translate_pairwise_distance);
OP_CONVERTER(translate_pixel_shuffle);
OP_CONVERTER(translate_pixel_unshuffle);
OP_CONVERTER(translate_polar);
OP_CONVERTER(translate_pow);
OP_CONVERTER(translate_prod);
OP_CONVERTER(translate_pythonop);
Expand All @@ -197,6 +198,7 @@ OP_CONVERTER(translate_quantized_hardswish);
OP_CONVERTER(translate_quantized_mul);
OP_CONVERTER(translate_range_length);
OP_CONVERTER(translate_rand);
OP_CONVERTER(translate_randperm);
OP_CONVERTER(translate_randn);
OP_CONVERTER(translate_randint);
OP_CONVERTER(translate_rand_like);
Expand Down Expand Up @@ -612,12 +614,14 @@ const std::unordered_map<std::string, CreatorFunction> get_supported_ops_ts() {
{"aten::pixel_shuffle", op::translate_pixel_shuffle},
{"aten::pixel_unshuffle", op::translate_pixel_unshuffle},
{"aten::prelu", op::translate_1to1_match_2_inputs<opset10::PRelu>},
{"aten::polar", op::translate_polar},
{"aten::pow", op::translate_pow},
{"aten::pow_", op::translate_pow},
{"aten::prod", op::translate_prod},
{"aten::quantize_per_channel", op::translate_quantize_per_channel},
{"aten::quantize_per_tensor", op::translate_quantize_per_tensor},
{"aten::rand", op::translate_rand},
{"aten::rand", op::translate_randperm},
{"aten::rand_like", op::translate_rand_like},
{"aten::randint", op::translate_randint},
{"aten::randn", op::translate_randn},
Expand Down
39 changes: 39 additions & 0 deletions tests/layer_tests/pytorch_tests/test_polar.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import pytest
import torch
import numpy as np
from pytorch_layer_test_class import PytorchLayerTest

class TestPolar(PytorchLayerTest):
def _prepare_input(self):
return (
np.array([1.0, 2.0, 3.0], dtype=np.float32),
np.array([0.1, 0.2, 0.3], dtype=np.float32)
)

def create_model(self):
class PolarModel(torch.nn.Module):
def forward(self, abs, angle):
real = abs * torch.cos(angle)
imag = abs * torch.sin(angle)
return torch.stack([real, imag], dim=-1)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You are not using aten::polar here. Please use it and return the value using torch.view_as_real

return PolarModel(), None, None

@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize("input_variant", ["static", "dynamic"])
def test_polar(self, ie_device, precision, ir_version, input_variant):
atol = 1e-4 if precision == "FP32" else 1e-3
rtol = 1e-4
if input_variant == "static":
input_data = self._prepare_input()
else:
static_input = self._prepare_input()
input_data = (
np.expand_dims(static_input[0], axis=0),
np.expand_dims(static_input[1], axis=0)
)
self._test(*self.create_model(), ie_device, precision, ir_version,
input_data=input_data, model_trace=True, atol=atol, rtol=rtol)
79 changes: 79 additions & 0 deletions tests/layer_tests/pytorch_tests/test_randperm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import pytest
import torch
import numpy as np
from pytorch_layer_test_class import PytorchLayerTest, flattenize_inputs
from copy import deepcopy

class TestRandperm(PytorchLayerTest):
def _prepare_input(self):
return ()

def create_model(self, n):
class AtenRandperm(torch.nn.Module):
def __init__(self, n):
super().__init__()
self.n = n

def forward(self):
return torch.randperm(self.n, dtype=torch.int64)

return AtenRandperm(n), None, "aten::randperm"

def is_valid_permutation(self, output, n):
if hasattr(output, 'detach'):
arr = output.detach().cpu().numpy().astype(np.int64)
else:
arr = np.array(output, dtype=np.int64)
sorted_arr = np.sort(arr.flatten())
expected = np.arange(n, dtype=np.int64)
return np.array_equal(sorted_arr, expected)

@pytest.mark.parametrize("n", [1, 5, 10])
@pytest.mark.nightly
@pytest.mark.precommit
def test_randperm_custom(self, n, ie_device, precision, ir_version):
model, ref_net, op = self.create_model(n)
inputs = self._prepare_input()
torch_inputs = [torch.from_numpy(x) if isinstance(x, np.ndarray) else x for x in inputs]
ov_inputs = flattenize_inputs(inputs)
trace_model = True
dynamic_shapes = True
freeze_model = True

with torch.no_grad():
smodel, converted_model = self.convert_directly_via_frontend(
model, torch_inputs, trace_model, dynamic_shapes, ov_inputs, freeze_model
)

from openvino import Core
core = Core()
compiled_model = core.compile_model(converted_model, ie_device).
ov_output_dict = compiled_model(())
ov_output_tensor = list(ov_output_dict.values())[0]

assert ov_output_tensor.shape[0] == n, f"Output shape {ov_output_tensor.shape} does not match expected ({n},)"
assert self.is_valid_permutation(ov_output_tensor, n), (
f"Output {ov_output_tensor} is not a valid permutation of [0, 1, ..., {n-1}]"
)

@pytest.mark.xfail(reason="OpenVINO doesn't support empty tensors for randperm")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Openvino can create an empty tensor:

auto const_empty = std::make_shared<v0::Constant>(element::i64, Shape{0}, std::vector<int64_t>{});

def test_randperm_zero(self, ie_device, precision, ir_version):
model, ref_net, op = self.create_model(0)
inputs = self._prepare_input()
torch_inputs = [torch.from_numpy(x) if isinstance(x, np.ndarray) else x for x in inputs]
ov_inputs = flattenize_inputs(inputs)
trace_model = True
dynamic_shapes = True
freeze_model = True

with torch.no_grad():
smodel, converted_model = self.convert_directly_via_frontend(
model, torch_inputs, trace_model, dynamic_shapes, ov_inputs, freeze_model
)
from openvino import Core
core = Core()
compiled_model = core.compile_model(converted_model, ie_device)
_ = compiled_model(())