Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added support for aten::randperm and aten::polar #29585

Merged
merged 29 commits into from
Apr 1, 2025
Merged
Show file tree
Hide file tree
Changes from 13 commits
Commits
Show all changes
29 commits
Select commit Hold shift + click to select a range
0656890
added aten::take function in pytorch, but tests are not running
vijaykr338 Mar 15, 2025
98c1c61
implemented aten::str, aten::delete but unable to write their tests
vijaykr338 Mar 15, 2025
725c474
Merge branch 'master' into master
vijaykr338 Mar 15, 2025
4176919
added support for aten::randperm with tests
vijaykr338 Mar 19, 2025
e32628f
Delete src/frontends/pytorch/src/op/delete.cpp
vijaykr338 Mar 19, 2025
1483255
cleaned
vijaykr338 Mar 19, 2025
8a16331
Delete tests/layer_tests/pytorch_tests/test_take.py
vijaykr338 Mar 19, 2025
e8b35e8
Delete src/frontends/pytorch/src/op/take.cpp
vijaykr338 Mar 19, 2025
16f11fa
Delete src/frontends/pytorch/src/op/str.cpp
vijaykr338 Mar 19, 2025
cd18e01
added support for aten::polar
vijaykr338 Mar 23, 2025
113d07e
fixed code style for aten::polar and aten::randperm
vijaykr338 Mar 23, 2025
c6ec86e
Merge branch 'master' into work2
vijaykr338 Mar 23, 2025
bf75e7b
Merge branch 'master' into work2
vijaykr338 Mar 24, 2025
c8dac15
Merge branch 'master' into work2
vijaykr338 Mar 24, 2025
dcc5d37
fixed coding style with clang-format-9 and added the suggested changes
vijaykr338 Mar 25, 2025
6bd7914
Update src/frontends/pytorch/src/op_table.cpp
vijaykr338 Mar 25, 2025
21f7245
Update test_polar.py
vijaykr338 Mar 25, 2025
8e42724
Merge branch 'master' into work2
vijaykr338 Mar 26, 2025
db261fc
Update polar.cpp
vijaykr338 Mar 26, 2025
bbb6952
Update test_randperm.py
vijaykr338 Mar 26, 2025
9cc31cd
Update tests/layer_tests/pytorch_tests/test_randperm.py
vijaykr338 Mar 26, 2025
7c9e745
Update polar.cpp
vijaykr338 Mar 26, 2025
7b4b3b7
Update randperm.cpp
vijaykr338 Mar 26, 2025
e8f42fa
Update test_randperm.py
vijaykr338 Mar 26, 2025
b27a3f2
Update test_randperm.py, added the mark
vijaykr338 Mar 26, 2025
f041050
Update test_randperm.py
vijaykr338 Mar 26, 2025
e7e3999
Update test_randperm.py
vijaykr338 Mar 28, 2025
e4d204d
Update test_polar.py
vijaykr338 Mar 28, 2025
0102220
Merge branch 'master' into work2
mvafin Mar 31, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions src/frontends/pytorch/src/op/polar.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
#include "openvino/op/cos.hpp"
#include "openvino/op/sin.hpp"
#include "openvino/op/multiply.hpp"
#include "openvino/op/concat.hpp"
#include "openvino/frontend/complex_type_mark.hpp"
#include "openvino/op/convert.hpp"
#include "utils.hpp"

namespace ov {
namespace frontend {
namespace pytorch {
namespace op {

using namespace ov::op;

OutputVector translate_polar(const NodeContext& context) {
num_inputs_check(context, 2, 3);
auto abs = context.get_input(0);
auto angle = context.get_input(1);
auto real = context.mark_node(std::make_shared<v1::Multiply>(abs,context.mark_node(std::make_shared<v0::Cos>(angle))));
auto imag = context.mark_node(std::make_shared<v1::Multiply>(abs,context.mark_node(std::make_shared<v0::Sin>(angle))));
auto complex_concat = context.mark_node(std::make_shared<v0::Concat>(OutputVector{real, imag}, -1));
// wrap the tensor with ComplexTypeMark to flag it as complex for later operations.
auto complex_tensor = context.mark_node(std::make_shared<ComplexTypeMark>(complex_concat));
return {complex_tensor};
}

} // namespace op
} // namespace pytorch
} // namespace frontend
} // namespace ov
48 changes: 48 additions & 0 deletions src/frontends/pytorch/src/op/randperm.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
#include "openvino/op/topk.hpp"
#include "openvino/op/random_uniform.hpp"
#include "openvino/frontend/pytorch/node_context.hpp"
#include "openvino/op/constant.hpp"
#include "utils.hpp"
#include "openvino/op/shape_of.hpp"

namespace ov {
namespace frontend {
namespace pytorch {
namespace op {

using namespace ov::op;

OutputVector translate_randperm(const NodeContext& context) {
auto num_inputs = context.get_input_size();
int64_t n = context.const_input<int64_t>(0);
int dtype_value = 4;
if (num_inputs == 1) {
} else if (num_inputs == 2) {
if (!context.input_is_none(1)) {
dtype_value = context.const_input<int>(1);
OPENVINO_ASSERT(dtype_value == 4, "Only dtype value 4 (int64) is supported for aten::randperm, got: ", dtype_value);
}
} else if (num_inputs == 5) {
if (!context.input_is_none(1)) {
dtype_value = context.const_input<int>(1);
OPENVINO_ASSERT(dtype_value == 4, "Only dtype value 4 (int64) is supported for aten::randperm, got: ", dtype_value);
}
} else {
PYTORCH_OP_CONVERSION_CHECK(false, "Unexpected number of inputs for aten::randperm: ", num_inputs);
}
if (n == 0) {
return {context.mark_node(v0::Constant::create(element::i64, Shape{0},std::vector<int64_t>{}))};}
auto shape = v0::Constant::create(element::i64, Shape{1}, {n});
auto min_val = v0::Constant::create(element::f32, Shape{}, {0.0f});
auto max_val = v0::Constant::create(element::f32, Shape{}, {1.0f});
auto random_tensor = context.mark_node(std::make_shared<v8::RandomUniform>(shape, min_val, max_val, element::f32));
const int64_t axis = 0;
auto k = v0::Constant::create(element::i64, Shape{}, {n});
auto topk = context.mark_node(std::make_shared<v11::TopK>(random_tensor, k, axis, ov::op::TopKMode::MIN, ov::op::TopKSortType::SORT_VALUES, element::i64, false));
return {topk->output(1)};
}

} // namespace op
} // namespace pytorch
} // namespace frontend
} // namespace ov
4 changes: 4 additions & 0 deletions src/frontends/pytorch/src/op_table.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -196,6 +196,7 @@ OP_CONVERTER(translate_permute);
OP_CONVERTER(translate_pairwise_distance);
OP_CONVERTER(translate_pixel_shuffle);
OP_CONVERTER(translate_pixel_unshuffle);
OP_CONVERTER(translate_polar);
OP_CONVERTER(translate_pow);
OP_CONVERTER(translate_prod);
OP_CONVERTER(translate_pythonop);
Expand All @@ -207,6 +208,7 @@ OP_CONVERTER(translate_quantized_hardswish);
OP_CONVERTER(translate_quantized_mul);
OP_CONVERTER(translate_range_length);
OP_CONVERTER(translate_rand);
OP_CONVERTER(translate_randperm);
OP_CONVERTER(translate_randn);
OP_CONVERTER(translate_randint);
OP_CONVERTER(translate_rand_like);
Expand Down Expand Up @@ -632,12 +634,14 @@ const std::unordered_map<std::string, CreatorFunction> get_supported_ops_ts() {
{"aten::pixel_shuffle", op::translate_pixel_shuffle},
{"aten::pixel_unshuffle", op::translate_pixel_unshuffle},
{"aten::prelu", op::translate_1to1_match_2_inputs<opset10::PRelu>},
{"aten::polar", op::translate_polar},
{"aten::pow", op::translate_pow},
{"aten::pow_", op::translate_pow},
{"aten::prod", op::translate_prod},
{"aten::quantize_per_channel", op::translate_quantize_per_channel},
{"aten::quantize_per_tensor", op::translate_quantize_per_tensor},
{"aten::rand", op::translate_rand},
{"aten::rand", op::translate_randperm},
{"aten::rand_like", op::translate_rand_like},
{"aten::randint", op::translate_randint},
{"aten::randn", op::translate_randn},
Expand Down
39 changes: 39 additions & 0 deletions tests/layer_tests/pytorch_tests/test_polar.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import pytest
import torch
import numpy as np
from pytorch_layer_test_class import PytorchLayerTest

class TestPolar(PytorchLayerTest):
def _prepare_input(self):
return (
np.array([1.0, 2.0, 3.0], dtype=np.float32),
np.array([0.1, 0.2, 0.3], dtype=np.float32)
)

def create_model(self):
class PolarModel(torch.nn.Module):
def forward(self, abs, angle):
real = abs * torch.cos(angle)
imag = abs * torch.sin(angle)
return torch.stack([real, imag], dim=-1)
return PolarModel(), None, None

@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize("input_variant", ["static", "dynamic"])
def test_polar(self, ie_device, precision, ir_version, input_variant):
atol = 1e-4 if precision == "FP32" else 1e-3
rtol = 1e-4
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
atol = 1e-4 if precision == "FP32" else 1e-3
rtol = 1e-4

you are not using atol and rtol here

Copy link
Contributor Author

@vijaykr338 vijaykr338 Mar 28, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ah yes, I have removed them now, I was initially using atol and rtol as I was worried about the floating point differences that might be produced, but the default test layer handles it fine!

if input_variant == "static":
input_data = self._prepare_input()
else:
static_input = self._prepare_input()
input_data = (
np.expand_dims(static_input[0], axis=0),
np.expand_dims(static_input[1], axis=0)
)
self._test(*self.create_model(), ie_device, precision, ir_version,
input_data=input_data, model_trace=True, atol=atol, rtol=rtol)
79 changes: 79 additions & 0 deletions tests/layer_tests/pytorch_tests/test_randperm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import pytest
import torch
import numpy as np
from pytorch_layer_test_class import PytorchLayerTest, flattenize_inputs
from copy import deepcopy

class TestRandperm(PytorchLayerTest):
def _prepare_input(self):
return ()

def create_model(self, n):
class AtenRandperm(torch.nn.Module):
def __init__(self, n):
super().__init__()
self.n = n

def forward(self):
return torch.randperm(self.n, dtype=torch.int64)

return AtenRandperm(n), None, "aten::randperm"

def is_valid_permutation(self, output, n):
if hasattr(output, 'detach'):
arr = output.detach().cpu().numpy().astype(np.int64)
else:
arr = np.array(output, dtype=np.int64)
sorted_arr = np.sort(arr.flatten())
expected = np.arange(n, dtype=np.int64)
return np.array_equal(sorted_arr, expected)

@pytest.mark.parametrize("n", [1, 5, 10])
@pytest.mark.nightly
@pytest.mark.precommit
def test_randperm_custom(self, n, ie_device, precision, ir_version):
model, ref_net, op = self.create_model(n)
inputs = self._prepare_input()
torch_inputs = [torch.from_numpy(x) if isinstance(x, np.ndarray) else x for x in inputs]
ov_inputs = flattenize_inputs(inputs)
trace_model = True
dynamic_shapes = True
freeze_model = True

with torch.no_grad():
smodel, converted_model = self.convert_directly_via_frontend(
model, torch_inputs, trace_model, dynamic_shapes, ov_inputs, freeze_model
)

from openvino import Core
core = Core()
compiled_model = core.compile_model(converted_model, ie_device).
ov_output_dict = compiled_model(())
ov_output_tensor = list(ov_output_dict.values())[0]

assert ov_output_tensor.shape[0] == n, f"Output shape {ov_output_tensor.shape} does not match expected ({n},)"
assert self.is_valid_permutation(ov_output_tensor, n), (
f"Output {ov_output_tensor} is not a valid permutation of [0, 1, ..., {n-1}]"
)

@pytest.mark.xfail(reason="OpenVINO doesn't support empty tensors for randperm")
def test_randperm_zero(self, ie_device, precision, ir_version):
model, ref_net, op = self.create_model(0)
inputs = self._prepare_input()
torch_inputs = [torch.from_numpy(x) if isinstance(x, np.ndarray) else x for x in inputs]
ov_inputs = flattenize_inputs(inputs)
trace_model = True
dynamic_shapes = True
freeze_model = True

with torch.no_grad():
smodel, converted_model = self.convert_directly_via_frontend(
model, torch_inputs, trace_model, dynamic_shapes, ov_inputs, freeze_model
)
from openvino import Core
core = Core()
compiled_model = core.compile_model(converted_model, ie_device)
_ = compiled_model(())
Loading