Skip to content

Commit

Permalink
make singlecam smoother robust to int/float smooth param
Browse files Browse the repository at this point in the history
  • Loading branch information
themattinthehatt committed Dec 12, 2024
1 parent a9a14c5 commit 2f86064
Show file tree
Hide file tree
Showing 3 changed files with 110 additions and 25 deletions.
12 changes: 10 additions & 2 deletions eks/singlecam_smoother.py
Original file line number Diff line number Diff line change
Expand Up @@ -405,14 +405,22 @@ def nll_loss_sequential_scan(s, cov_mats, cropped_ys, m0s, S0s, Cs, As, Rs, ense

# Optimize smooth_param
if smooth_param is not None:
s_finals = [smooth_param] if isinstance(smooth_param, float) else smooth_param
if isinstance(smooth_param, float):
s_finals = [smooth_param]
elif isinstance(smooth_param, int):
s_finals = [float(smooth_param)]
else:
s_finals = smooth_param
else:
guesses = []
cropped_ys = []
for k in range(n_keypoints):
current_guess = compute_initial_guesses(ensemble_vars[:, k, :])
guesses.append(current_guess)
cropped_ys.append(crop_frames(ys[k], s_frames))
if s_frames is None or len(s_frames) == 0:
cropped_ys.append(ys[k])
else:
cropped_ys.append(crop_frames(ys[k], s_frames))

cropped_ys = np.array(cropped_ys) # Concatenation of this list along dimension 0

Expand Down
51 changes: 39 additions & 12 deletions tests/test_ibl_pupil_smoother.py
Original file line number Diff line number Diff line change
Expand Up @@ -172,6 +172,14 @@ def test_add_mean_to_array_single_row():

def test_ensemble_kalman_smoother_ibl_pupil():

def _check_outputs(df, params, nlls):
assert isinstance(df, pd.DataFrame), "first return arg should be a DataFrame"
assert df.shape[0] == 100, "markers_df should have 100 rows"
assert len(params) == 2, "Expected 2 smooth parameters"
assert params[0] < 1, "Expected diameter smoothing parameter to be less than 1"
assert params[1] < 1, "Expected COM smoothing parameter to be less than 1"
assert isinstance(nlls, list), "Expected nll_values to be a list"

# Create mock data
columns = [
'pupil_top_r_x', 'pupil_top_r_y', 'pupil_bottom_r_x', 'pupil_bottom_r_y',
Expand All @@ -181,22 +189,41 @@ def test_ensemble_kalman_smoother_ibl_pupil():
pd.DataFrame(np.random.randn(100, 8), columns=columns),
pd.DataFrame(np.random.randn(100, 8), columns=columns),
]
smooth_params = [0.5, 0.5]
s_frames = [(1, 20)]

# Run the function with mocked data
# Run with fixed smooth params
smooth_params = [0.5, 0.5]
smoothed_df, smooth_params_out, nll_values = ensemble_kalman_smoother_ibl_pupil(
markers_list, smooth_params, s_frames, avg_mode='mean', var_mode='var',
)
_check_outputs(smoothed_df, smooth_params_out, nll_values)
assert smooth_params == smooth_params_out

# Assertions
assert isinstance(smoothed_df, pd.DataFrame), "first return arg should be a DataFrame"

# Verify the shape of the output DataFrames
assert smoothed_df.shape[0] == 100, "markers_df should have 100 rows"

# Check if the smooth parameters and NLL values are correctly returned
assert len(smooth_params_out) == 2, "Expected 2 smooth parameters"
assert isinstance(nll_values, list), "Expected nll_values to be a list"
# Run with [None, None] smooth params
smoothed_df, smooth_params_out, nll_values = ensemble_kalman_smoother_ibl_pupil(
markers_list, [None, None], s_frames, avg_mode='mean', var_mode='var',
)
_check_outputs(smoothed_df, smooth_params_out, nll_values)

print("All tests passed successfully.")
# Run with None smooth params
smoothed_df, smooth_params_out, nll_values = ensemble_kalman_smoother_ibl_pupil(
markers_list, None, s_frames, avg_mode='mean', var_mode='var',
)
_check_outputs(smoothed_df, smooth_params_out, nll_values)

# CURRENTLY NOT SUPPORTED: fix one smooth param

# Run with diameter smooth param
# smooth_params = [0.9, None]
# smoothed_df, smooth_params_out, nll_values = ensemble_kalman_smoother_ibl_pupil(
# markers_list, [0.9, None], s_frames, avg_mode='mean', var_mode='var',
# )
# _check_outputs(smoothed_df, smooth_params_out, nll_values)
# assert smooth_params[0] == smooth_params_out[0]

# Run with COM smooth param
# smoothed_df, smooth_params_out, nll_values = ensemble_kalman_smoother_ibl_pupil(
# markers_list, [None, 0.9], s_frames, avg_mode='mean', var_mode='var',
# )
# _check_outputs(smoothed_df, smooth_params_out, nll_values)
# assert smooth_params[1] == smooth_params_out[1]
72 changes: 61 additions & 11 deletions tests/test_singlecam_smoother.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,36 +11,86 @@

def test_ensemble_kalman_smoother_singlecam():

def _check_outputs(df, params):
# Basic checks to ensure the function runs and returns expected types
assert isinstance(df_smoothed, pd.DataFrame), \
f"Expected first return value to be a pd.DataFrame, got {type(df_smoothed)}"
assert isinstance(s_finals, (list, np.ndarray)), \
"Expected s_finals to be a list or an ndarray"

# Check for different return values in the correct level of the columns
for v in ['x', 'y', 'likelihood']:
assert v in df_smoothed.columns.get_level_values('coords'), \
"Expected 'likelihood' in DataFrame columns at the 'coords' level"

# Create mock data
keypoint_names = ['kp1', 'kp2']
columns = [f'{kp}_{coord}' for kp in keypoint_names for coord in ['x', 'y', 'likelihood']]
markers_list = [
pd.DataFrame(np.random.randn(100, len(columns)), columns=columns),
pd.DataFrame(np.random.randn(100, len(columns)), columns=columns),
]
smooth_param = 0.1
s_frames = None
blocks = []

# Call the smoother function
# run with fixed smooth param (float)
smooth_param = 0.1
df_smoothed, s_finals = ensemble_kalman_smoother_singlecam(
markers_list=markers_list,
keypoint_names=keypoint_names,
smooth_param=smooth_param,
s_frames=s_frames,
blocks=blocks,
)
_check_outputs(df_smoothed, s_finals)
assert s_finals == [smooth_param]

# Basic checks to ensure the function runs and returns expected types
assert isinstance(df_smoothed, pd.DataFrame), \
f"Expected first return value to be a pd.DataFrame, got {type(df_smoothed)}"
assert isinstance(s_finals, (list, np.ndarray)), \
"Expected s_finals to be a list or an ndarray"
# run with fixed smooth param (int)
smooth_param = 5
df_smoothed, s_finals = ensemble_kalman_smoother_singlecam(
markers_list=markers_list,
keypoint_names=keypoint_names,
smooth_param=smooth_param,
s_frames=s_frames,
blocks=blocks,
)
_check_outputs(df_smoothed, s_finals)
assert s_finals == [smooth_param]

# Check for different return values in the correct level of the columns
for v in ['x', 'y', 'likelihood']:
assert v in df_smoothed.columns.get_level_values('coords'), \
"Expected 'likelihood' in DataFrame columns at the 'coords' level"
# run with fixed smooth param (single-entry list)
smooth_param = [0.1]
df_smoothed, s_finals = ensemble_kalman_smoother_singlecam(
markers_list=markers_list,
keypoint_names=keypoint_names,
smooth_param=smooth_param,
s_frames=s_frames,
blocks=blocks,
)
_check_outputs(df_smoothed, s_finals)
assert s_finals == smooth_param

# run with fixed smooth param (list)
smooth_param = [0.1, 0.4]
df_smoothed, s_finals = ensemble_kalman_smoother_singlecam(
markers_list=markers_list,
keypoint_names=keypoint_names,
smooth_param=smooth_param,
s_frames=s_frames,
blocks=blocks,
)
_check_outputs(df_smoothed, s_finals)
assert np.all(s_finals == smooth_param)

# run with None smooth param
smooth_param = None
df_smoothed, s_finals = ensemble_kalman_smoother_singlecam(
markers_list=markers_list,
keypoint_names=keypoint_names,
smooth_param=smooth_param,
s_frames=s_frames,
blocks=blocks,
)
_check_outputs(df_smoothed, s_finals)


def test_adjust_observations():
Expand Down

0 comments on commit 2f86064

Please sign in to comment.