Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Removes chained indexing. #449

Merged
merged 1 commit into from
Aug 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
116 changes: 58 additions & 58 deletions tests/test_algos.py
Original file line number Diff line number Diff line change
Expand Up @@ -651,9 +651,9 @@ def test_select_all():

dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0)
data["c1"][dts[1]] = np.nan
data["c2"][dts[1]] = 95
data["c1"][dts[2]] = -5
data.loc[dts[1], "c1"] = np.nan
data.loc[dts[1], "c2"] = 95
data.loc[dts[2], "c1"] = -5

s.setup(data)
s.update(dts[0])
Expand Down Expand Up @@ -705,9 +705,9 @@ def test_select_randomly_n_none():

dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0)
data["c1"][dts[1]] = np.nan
data["c2"][dts[1]] = 95
data["c1"][dts[2]] = -5
data.loc[dts[1], "c1"] = np.nan
data.loc[dts[1], "c2"] = 95
data.loc[dts[2], "c1"] = -5

s.setup(data)
s.update(dts[0])
Expand Down Expand Up @@ -758,9 +758,9 @@ def test_select_randomly():

dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2", "c3"], data=100.0)
data["c1"][dts[0]] = np.nan
data["c2"][dts[0]] = 95
data["c3"][dts[0]] = -5
data.loc[dts[0], "c1"] = np.nan
data.loc[dts[0], "c2"] = 95
data.loc[dts[0], "c3"] = -5

s.setup(data)
s.update(dts[0])
Expand Down Expand Up @@ -792,9 +792,9 @@ def test_select_these():

dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0)
data["c1"][dts[1]] = np.nan
data["c2"][dts[1]] = 95
data["c1"][dts[2]] = -5
data.loc[dts[1], "c1"] = np.nan
data.loc[dts[1], "c2"] = 95
data.loc[dts[2], "c1"] = -5

s.setup(data)
s.update(dts[0])
Expand Down Expand Up @@ -852,9 +852,9 @@ def test_select_where_all():

dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0)
data["c1"][dts[1]] = np.nan
data["c2"][dts[1]] = 95
data["c1"][dts[2]] = -5
data.loc[dts[1], "c1"] = np.nan
data.loc[dts[1], "c2"] = 95
data.loc[dts[2], "c1"] = -5

where = pd.DataFrame(index=dts, columns=["c1", "c2"], data=True)

Expand Down Expand Up @@ -911,7 +911,7 @@ def test_select_where():

where = pd.DataFrame(index=dts, columns=["c1", "c2"], data=True)
where.loc[dts[1]] = False
where["c1"].loc[dts[2]] = False
where.loc[dts[2], "c1"] = False

algo = algos.SelectWhere("where")

Expand Down Expand Up @@ -941,7 +941,7 @@ def test_select_where_legacy():

where = pd.DataFrame(index=dts, columns=["c1", "c2"], data=True)
where.loc[dts[1]] = False
where["c1"].loc[dts[2]] = False
where.loc[dts[2], "c1"] = False

algo = algos.SelectWhere(where)

Expand Down Expand Up @@ -980,9 +980,9 @@ def test_resolve_on_the_run():
s = bt.Strategy("s")
dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2", "b1"], data=100.0)
data["c1"][dts[1]] = np.nan
data["c2"][dts[1]] = 95
data["c2"][dts[2]] = -5
data.loc[dts[1], "c1"] = np.nan
data.loc[dts[1], "c2"] = 95
data.loc[dts[2], "c2"] = -5

on_the_run = pd.DataFrame(index=dts, columns=["c"], data="c1")
on_the_run.loc[dts[2], "c"] = "c2"
Expand Down Expand Up @@ -1097,8 +1097,8 @@ def test_weight_specified():

dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100)
data["c1"][dts[1]] = 105
data["c2"][dts[1]] = 95
data.loc[dts[1], "c1"] = 105
data.loc[dts[1], "c2"] = 95

s.setup(data)
s.update(dts[0])
Expand Down Expand Up @@ -1128,8 +1128,8 @@ def test_select_has_data():

dts = pd.date_range("2010-01-01", periods=10)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0)
data["c1"].loc[dts[0]] = np.nan
data["c1"].loc[dts[1]] = np.nan
data.loc[dts[0], "c1"] = np.nan
data.loc[dts[1], "c1"] = np.nan

s.setup(data)
s.update(dts[2])
Expand All @@ -1147,8 +1147,8 @@ def test_select_has_data_preselected():

dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0)
data["c1"].loc[dts[0]] = np.nan
data["c1"].loc[dts[1]] = np.nan
data.loc[dts[0], "c1"] = np.nan
data.loc[dts[1], "c1"] = np.nan

s.setup(data)
s.update(dts[2])
Expand Down Expand Up @@ -1195,8 +1195,8 @@ def test_weigh_target():
dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0)
target = pd.DataFrame(index=dts[:2], columns=["c1", "c2"], data=0.5)
target["c1"].loc[dts[1]] = 1.0
target["c2"].loc[dts[1]] = 0.0
target.loc[dts[1], "c1"] = 1.0
target.loc[dts[1], "c2"] = 0.0

s.setup(data, target=target)

Expand Down Expand Up @@ -1227,16 +1227,16 @@ def test_weigh_inv_vol():
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0)

# high vol c1
data["c1"].loc[dts[1]] = 105
data["c1"].loc[dts[2]] = 95
data["c1"].loc[dts[3]] = 105
data["c1"].loc[dts[4]] = 95
data.loc[dts[1], "c1"] = 105
data.loc[dts[2], "c1"] = 95
data.loc[dts[3], "c1"] = 105
data.loc[dts[4], "c1"] = 95

# low vol c2
data["c2"].loc[dts[1]] = 100.1
data["c2"].loc[dts[2]] = 99.9
data["c2"].loc[dts[3]] = 100.1
data["c2"].loc[dts[4]] = 99.9
data.loc[dts[1], "c2"] = 100.1
data.loc[dts[2], "c2"] = 99.9
data.loc[dts[3], "c2"] = 100.1
data.loc[dts[4], "c2"] = 99.9

s.setup(data)
s.update(dts[4])
Expand Down Expand Up @@ -1303,12 +1303,12 @@ def test_set_stat():

dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0)
data["c1"].loc[dts[1]] = 105
data["c2"].loc[dts[1]] = 95
data.loc[dts[1], "c1"] = 105
data.loc[dts[1], "c2"] = 95

stat = pd.DataFrame(index=dts, columns=["c1", "c2"], data=4.0)
stat["c1"].loc[dts[1]] = 5.0
stat["c2"].loc[dts[1]] = 6.0
stat.loc[dts[1], "c1"] = 5.0
stat.loc[dts[1], "c2"] = 6.0

algo = algos.SetStat("test_stat")

Expand All @@ -1333,12 +1333,12 @@ def test_set_stat_legacy():

dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0)
data["c1"].loc[dts[1]] = 105
data["c2"].loc[dts[1]] = 95
data.loc[dts[1], "c1"] = 105
data.loc[dts[1], "c2"] = 95

stat = pd.DataFrame(index=dts, columns=["c1", "c2"], data=4.0)
stat["c1"].loc[dts[1]] = 5.0
stat["c2"].loc[dts[1]] = 6.0
stat.loc[dts[1], "c1"] = 5.0
stat.loc[dts[1], "c2"] = 6.0

algo = algos.SetStat(stat)

Expand All @@ -1363,8 +1363,8 @@ def test_stat_total_return():

dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0)
data["c1"].loc[dts[2]] = 105
data["c2"].loc[dts[2]] = 95
data.loc[dts[2], "c1"] = 105
data.loc[dts[2], "c2"] = 95

s.setup(data)
s.update(dts[2])
Expand All @@ -1384,8 +1384,8 @@ def test_select_n():

dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0)
data["c1"].loc[dts[2]] = 105
data["c2"].loc[dts[2]] = 95
data.loc[dts[2], "c1"] = 105
data.loc[dts[2], "c2"] = 95

s.setup(data)
s.update(dts[2])
Expand Down Expand Up @@ -1424,8 +1424,8 @@ def test_select_n_perc():

dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0)
data["c1"].loc[dts[2]] = 105
data["c2"].loc[dts[2]] = 95
data.loc[dts[2], "c1"] = 105
data.loc[dts[2], "c2"] = 95

s.setup(data)
s.update(dts[2])
Expand All @@ -1444,8 +1444,8 @@ def test_select_momentum():

dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100.0)
data["c1"].loc[dts[2]] = 105
data["c2"].loc[dts[2]] = 95
data.loc[dts[2], "c1"] = 105
data.loc[dts[2], "c2"] = 95

s.setup(data)
s.update(dts[2])
Expand Down Expand Up @@ -2024,8 +2024,8 @@ def test_update_risk():
s = bt.Strategy("s", children=[c1, c2])
dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100)
data["c1"].loc[dts[1]] = 105
data["c2"].loc[dts[1]] = 95
data.loc[dts[1], "c1"] = 105
data.loc[dts[1], "c2"] = 95
c1 = s["c1"]
c2 = s["c2"]

Expand Down Expand Up @@ -2064,8 +2064,8 @@ def test_update_risk_history_1():
s = bt.Strategy("s", children=[c1, c2])
dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100)
data["c1"].loc[dts[1]] = 105
data["c2"].loc[dts[1]] = 95
data.loc[dts[1], "c1"] = 105
data.loc[dts[1], "c2"] = 95
c1 = s["c1"]
c2 = s["c2"]

Expand Down Expand Up @@ -2098,8 +2098,8 @@ def test_update_risk_history_2():
s = bt.Strategy("s", children=[c1, c2])
dts = pd.date_range("2010-01-01", periods=3)
data = pd.DataFrame(index=dts, columns=["c1", "c2"], data=100)
data["c1"].loc[dts[1]] = 105
data["c2"].loc[dts[1]] = 95
data.loc[dts[1], "c1"] = 105
data.loc[dts[1], "c2"] = 95
c1 = s["c1"]
c2 = s["c2"]

Expand Down
32 changes: 16 additions & 16 deletions tests/test_backtest.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,14 +83,14 @@ def test_turnover():
dts = pd.date_range("2010-01-01", periods=5)
data = pd.DataFrame(index=dts, columns=["a", "b"], data=100)

data["a"][dts[1]] = 105
data["b"][dts[1]] = 95
data.loc[dts[1], "a"] = 105
data.loc[dts[1], "b"] = 95

data["a"][dts[2]] = 110
data["b"][dts[2]] = 90
data.loc[dts[2], "a"] = 110
data.loc[dts[2], "b"] = 90

data["a"][dts[3]] = 115
data["b"][dts[3]] = 85
data.loc[dts[3], "a"] = 115
data.loc[dts[3], "b"] = 85

s = bt.Strategy(
"s", [bt.algos.SelectAll(), bt.algos.WeighEqually(), bt.algos.Rebalance()]
Expand Down Expand Up @@ -265,18 +265,18 @@ def test_30_min_data():
def test_RenomalizedFixedIncomeResult():
dts = pd.date_range("2010-01-01", periods=5)
data = pd.DataFrame(index=dts, columns=["a"], data=1.0)
data["a"][dts[0]] = 0.99
data["a"][dts[1]] = 1.01
data["a"][dts[2]] = 0.99
data["a"][dts[3]] = 1.01
data["a"][dts[4]] = 0.99
data.loc[dts[0], "a"] = 0.99
data.loc[dts[1], "a"] = 1.01
data.loc[dts[2], "a"] = 0.99
data.loc[dts[3], "a"] = 1.01
data.loc[dts[4], "a"] = 0.99

weights = pd.DataFrame(index=dts, columns=["a"], data=1.0)
weights["a"][dts[0]] = 1.0
weights["a"][dts[1]] = 2.0
weights["a"][dts[2]] = 1.0
weights["a"][dts[3]] = 2.0
weights["a"][dts[4]] = 1.0
weights.loc[dts[0], "a"] = 1.0
weights.loc[dts[1], "a"] = 2.0
weights.loc[dts[2], "a"] = 1.0
weights.loc[dts[3], "a"] = 2.0
weights.loc[dts[4], "a"] = 1.0

coupons = pd.DataFrame(index=dts, columns=["a"], data=0.0)

Expand Down
Loading