Skip to content

Vulkan-based implementation of D3D8, 9, 10 and 11 for Linux/Wine, without needing Vulkan 1.3

License

Notifications You must be signed in to change notification settings

pythonlover02/DXVK-Sarek

 
 

Repository files navigation

DXVK-Sarek:

Why Does This Repo Exist?

This repository was created to support users with Vulkan capable GPUs that do not meet the 1.3 requirement of the current builds. My goal is to ensure that everyone can benefit from the nice performance of DXVK, even if their hardware is slightly older.

Additionally, this project is intended to be integrated into Proton Sarek. The main idea is to backport Quality of Life (QOL) patches and per game configurations from the latest versions to the 1.10.x branch.

Also, a huge thank you to the following contributors for their invaluable help in making this project a reality:

Your contributions are greatly appreciated!

All credits to doitsujin/ドイツ人 (Philip Rebohle), you can find the original repository here: dxvk.

How to use

In order to install a DXVK package obtained from the release page into a given wine prefix, copy or symlink the DLLs into the following directories as follows, then open winecfg and manually add DLL overrides for d3d11, d3d10core, dxgi, and d3d9:

WINEPREFIX=/path/to/wineprefix
cp x64/*.dll $WINEPREFIX/drive_c/windows/system32
cp x32/*.dll $WINEPREFIX/drive_c/windows/syswow64
winecfg

Verify that your application uses DXVK instead of wined3d by enabling the HUD (see notes below).

In order to remove DXVK from a prefix, remove the DLLs and DLL overrides, and run wineboot -u to restore the original DLL files.

Build instructions

In order to pull in all submodules that are needed for building, clone the repository using the following command/commands:

For Normal DXVK:

git clone --branch 1.10.x-Proton-Sarek --recurse https://github.com/pythonlover02/DXVK-Sarek.git DXVK

For DXVK with Async Patch:

git clone --branch 1.10.x-Proton-Sarek-Async --recurse https://github.com/pythonlover02/DXVK-Sarek.git DXVK-Async

Requirements:

Building DLLs

The simple way

Inside the DXVK directory, run:

./package-release.sh master /your/target/directory --no-package

This will create a folder dxvk-master in /your/target/directory, which contains both 32-bit and 64-bit versions of DXVK, which can be set up in the same way as the release versions as noted above.

In order to preserve the build directories for development, pass --dev-build to the script. This option implies --no-package. After making changes to the source code, you can then do the following to rebuild DXVK:

# change to build.32 for 32-bit
cd /your/target/directory/build.64
ninja install

Compiling manually

# 64-bit build. For 32-bit builds, replace
# build-win64.txt with build-win32.txt
meson setup --cross-file build-win64.txt --buildtype release --prefix /your/dxvk/directory build.w64
cd build.w64
ninja install

The D3D9, D3D10, D3D11 and DXGI DLLs will be located in /your/dxvk/directory/bin. Setup has to be done manually in this case.

Notes on Vulkan drivers

Before reporting an issue, please check the Wiki page on the current driver status and make sure you run a recent enough driver version for your hardware.

Online multi-player games

Manipulation of Direct3D libraries in multi-player games may be considered cheating and can get your account banned. This may also apply to single-player games with an embedded or dedicated multiplayer portion. Use at your own risk.

Logs

When used with Wine, DXVK will print log messages to stderr. Additionally, standalone log files can optionally be generated by setting the DXVK_LOG_PATH variable, where log files in the given directory will be called app_d3d11.log, app_dxgi.log etc., where app is the name of the game executable.

On Windows, log files will be created in the game's working directory by default, which is usually next to the game executable.

HUD

The DXVK_HUD environment variable controls a HUD which can display the framerate and some stat counters. It accepts a comma-separated list of the following options:

  • devinfo: Displays the name of the GPU and the driver version.
  • fps: Shows the current frame rate.
  • frametimes: Shows a frame time graph.
  • submissions: Shows the number of command buffers submitted per frame.
  • drawcalls: Shows the number of draw calls and render passes per frame.
  • pipelines: Shows the total number of graphics and compute pipelines.
  • memory: Shows the amount of device memory allocated and used.
  • gpuload: Shows estimated GPU load. May be inaccurate.
  • version: Shows DXVK version.
  • api: Shows the D3D feature level used by the application.
  • cs: Shows worker thread statistics.
  • compiler: Shows shader compiler activity
  • samplers: Shows the current number of sampler pairs used [D3D9 Only]
  • scale=x: Scales the HUD by a factor of x (e.g. 1.5)
  • opacity=y: Adjusts the HUD opacity by a factor of y (e.g. 0.5, 1.0 being fully opaque).

Additionally, DXVK_HUD=1 has the same effect as DXVK_HUD=devinfo,fps, and DXVK_HUD=full enables all available HUD elements.

Frame rate limit

The DXVK_FRAME_RATE environment variable can be used to limit the frame rate. A value of 0 uncaps the frame rate, while any positive value will limit rendering to the given number of frames per second. Alternatively, the configuration file can be used.

Device filter

Some applications do not provide a method to select a different GPU. In that case, DXVK can be forced to use a given device:

  • DXVK_FILTER_DEVICE_NAME="Device Name" Selects devices with a matching Vulkan device name, which can be retrieved with tools such as vulkaninfo. Matches on substrings, so "VEGA" or "AMD RADV VEGA10" is supported if the full device name is "AMD RADV VEGA10 (LLVM 9.0.0)", for example. If the substring matches more than one device, the first device matched will be used.

Note: If the device filter is configured incorrectly, it may filter out all devices and applications will be unable to create a D3D device.

State cache

DXVK caches pipeline state by default, so that shaders can be recompiled ahead of time on subsequent runs of an application, even if the driver's own shader cache got invalidated in the meantime. This cache is enabled by default, and generally reduces stuttering.

The following environment variables can be used to control the cache:

  • DXVK_STATE_CACHE=0 Disables the state cache.
  • DXVK_STATE_CACHE_PATH=/some/directory Specifies a directory where to put the cache files. Defaults to the current working directory of the application.

Debugging

The following environment variables can be used for debugging purposes.

  • VK_INSTANCE_LAYERS=VK_LAYER_KHRONOS_validation Enables Vulkan debug layers. Highly recommended for troubleshooting rendering issues and driver crashes. Requires the Vulkan SDK to be installed on the host system.
  • DXVK_LOG_LEVEL=none|error|warn|info|debug Controls message logging.
  • DXVK_LOG_PATH=/some/directory Changes path where log files are stored. Set to none to disable log file creation entirely, without disabling logging.
  • DXVK_CONFIG_FILE=/xxx/dxvk.conf Sets path to the configuration file.
  • DXVK_PERF_EVENTS=1 Enables use of the VK_EXT_debug_utils extension for translating performance event markers.

Troubleshooting

DXVK requires threading support from your mingw-w64 build environment. If you are missing this, you may see "error: ‘std::cv_status’ has not been declared" or similar threading related errors.

On Debian and Ubuntu, this can be resolved by using the posix alternate, which supports threading. For example, choose the posix alternate from these commands:

update-alternatives --config x86_64-w64-mingw32-gcc
update-alternatives --config x86_64-w64-mingw32-g++
update-alternatives --config i686-w64-mingw32-gcc
update-alternatives --config i686-w64-mingw32-g++

For non debian based distros, make sure that your mingw-w64-gcc cross compiler does have --enable-threads=posix enabled during configure. If your distro does ship its mingw-w64-gcc binary with --enable-threads=win32 you might have to recompile locally or open a bug at your distro's bugtracker to ask for it.

About

Vulkan-based implementation of D3D8, 9, 10 and 11 for Linux/Wine, without needing Vulkan 1.3

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 98.9%
  • Other 1.1%