Skip to content

Official implementation of "Art-Free Generative Models: Art Creation Without Graphic Art Knowledge"

License

Notifications You must be signed in to change notification settings

rhfeiyang/art-free-diffusion

Repository files navigation

Art-Free Generative Models: Art Creation Without Graphic Art Knowledge

teaser


Art-Free Generative Models: Art Creation Without Graphic Art Knowledge

Hui Ren*, Joanna Materzynska*, Rohit Gandikota, David Bau, Antonio Torralba

(* indicates equal contribution)

We explore the question: ``How much prior art knowledge is needed to create art?". To find out, we designed a text-to-image generation model that skips training on art-related content entirely. Then, we developed a straightforward method to create an "art adapter," which learns artistic styles using just a handful of examples. Our experiments reveal that the art generated this way is rated by users as on par with pieces from models trained on massive, art-heavy datasets. Finally, through data attribution techniques, we illustrate how examples from both artistic and non-artistic datasets contributed to the creation of new artistic styles.

Huggingface Demo Open In Hugging Face Spaces

HF demo

Colab Demo Open In Colab

See demo.ipynb for a demo of our Art-Free Diffusion model and Art Adapter.

Setup

To set up your python environment:

git clone https://github.com/rhfeiyang/art-free-diffusion.git
cd art-free-diffusion
conda env create -n diffusion -f environment.yml
conda activate diffusion

Data preparation

Art-free SAM

Download original SA-1B dataset from here and extract by keeping the split folder structure. Download caption dataset(SAM-LLaVA-Captions10M) from here and extract. The folder structure should be like:

sam_dataset
├── captions
│   ├── 0.txt
│   ├── 1.txt
│   └── ...
├── images
│   ├── sa_000000
│     ├── 0.jpg
│     ├── 1.jpg
│     └── ...
│   ├── sa_000001
│     ├── 0.jpg
│     ├── 1.jpg
│     └── ...
│   ├── ...
│   └── sa_000999
└── 

Then specify the dataset roots in custom_datasets/mypath.py(sam_images, sam_captions).

To Download our Art-Free SAM ids:

cd data
python download.py -d Art-Free-SAM
cd ..

Artistic Style Dataset

Download our selected artistic style dataset (obtained from wikiart) by:

cd data
python download.py -d art_styles
cd ..

Laion-pop500

Download our 500 images with annotations by:

cd data
python download.py -d laion_pop500
cd ..

Train artistic adapter

Purpose and Ethical Use

  • Users should only provide content that they own or have rights to, including their own creative works or photographic art.
  • The tool is not designed to learn from or replicate the styles of external artists, guaranteeing that any generated models are based solely on real-world data or the user’s personal input.

Model Zoo

Download the pre-trained 17 art adapters(Derain, Corot, Matisse, Klimt, Picasso, Andy, Richter, Hokusai, Monet, Van Gogh, ...) by:

cd data
python download.py -d art_adapters
cd ..

Train

To train an Art Adapter, specify the style folder and running:

python train_artistic.py --style_folder <style_folder> --save_path <save_path>

For example, to train an adapter on Derain's art style:

python train_artistic.py --style_folder data/Art_styles/andre-derain/fauvism/subset1 --save_path <save_path>

The trained adaptor will be saved in the format like <save_path>/adapter_alpha1.0_rank1_all_up_1000steps.pt

Optional arguments:

  • --style_folder: the path to the test-time artistic style dataset
  • --save_path: the path to save the trained adaptor
  • --rank: the rank of the adaptor
  • --iterations: the number of iterations to train the adaptor

Inference with an Art Adapter

Art Generation from prompts

python inference.py --lora_weights <lora_location> --from_scratch --start_noise -1 --infer_prompts <prompts-or-file> --save_dir <save_location>

For example, to generate an image from the prompt "Sunset over the ocean with waves and rocks":

python inference.py --lora_weights <lora_location> --from_scratch --start_noise -1 --infer_prompts "Sunset over the ocean with waves and rocks" --save_dir <save_location>

And to generate from a prompts.txt containing prompts each line:

python inference.py --lora_weights <lora_location> --from_scratch --start_noise -1 --infer_prompts prompts.txt --save_dir <save_location>

Optional arguments:

  • --seed: the seed number for random generation, default is not deterministic
  • --start_noise: the time step that adaptor starts to be incorporated into the generation, -1 for all steps
  • --no_load: whether to force generation even if there is an existing output in the save directory
  • --infer_prompts: it can receive a list of string input or .txt/.csv input. For csv, specify caption column by name caption, and seed column with random seeds for each caption.

Image Stylization

For image stylization, the arg --val_set specifies the name of the validation set. For example,

python inference.py --lora_weights <lora_location> --start_noise 800 --val_set laion_pop500 --save_dir <save_location>

Optional arguments:

  • --val_set: the name of the validation set, supports laion_pop500, laion_pop500_first_sentence, lhq500
  • --seed: the seed number for random generation, default is not deterministic
  • --start_noise: the time step that adaptor starts to be incorporated into the generation, -1 is for all steps. For positive values (0-1000), the larger the value, the more the adaptor is incorporated into the generation.
  • --no_load: whether to force generation even if there is an existing output in the save directory

Metric evaluation

First download the CSD model by:

cd data
python download.py -d csd
cd ..

Then just add --ref_image_folder <path_to_style_set> to the inference command. For example,

python inference.py --lora_weights <lora_location> --start_noise 800 --val_set laion_pop500 --save_dir <save_location> --ref_image_folder data/Art_styles/andre-derain/fauvism/subset1

Citation

If you find this useful for your research, please cite the following:

@misc{ren2024art-free,
    title={Art-Free Generative Models: Art Creation Without Graphic Art Knowledge},
    author={Hui Ren and Joanna Materzynska and Rohit Gandikota and David Bau and Antonio Torralba},
    year={2024},
    eprint={2412.00176},
    archivePrefix={arXiv},
    primaryClass={cs.CV},
    url={https://arxiv.org/abs/2412.00176},
}

About

Official implementation of "Art-Free Generative Models: Art Creation Without Graphic Art Knowledge"

Topics

Resources

License

Stars

Watchers

Forks