Skip to content

rrr-uom-projects/autosegmentation_code_for_dissertation

 
 

Repository files navigation

autosegmentaion_code

Code used for my dissertation project

Preliminary instructions

  1. Clone this repository
  2. create a new python virtual environment: python -m venv autosegmentation_env
  3. activate the virtual environment: source autosegmentation_env/bin/activate
  4. install requirements: pip install -r requirements.txt

Main instructions

  1. Convert Dicom to Nifti using step_0_convert_from_dicom_to_nifti.py
  2. Combine structures into a single mask with Combining_structures.py
  3. Crop the images with crop_crop.py
  4. Use resampling.py to reduce size further and make images a consistent spacing
  5. use preprocess.py to preprocess the data
  6. train using train.py
  7. test using test.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%