Skip to content
#

elbow-plot

Here are 43 public repositories matching this topic...

The project involves performing clustering analysis (K-Means, Hierarchical clustering, visualization post PCA) to segregate stocks based on similar characteristics or with minimum correlation. Having a diversified portfolio tends to yield higher returns and face lower risk by tempering potential losses when the market is down.

  • Updated Jan 20, 2022
  • Jupyter Notebook

Assignment-08-PCA-Data-Mining-Wine data. Perform Principal component analysis and perform clustering using first 3 principal component scores (both heirarchial and k mean clustering(scree plot or elbow curve) and obtain optimum number of clusters and check whether we have obtained same number of clusters with the original data (class column we h…

  • Updated Jul 3, 2021
  • Jupyter Notebook

Perform clustering (K means clustering) for the airlines data to obtain optimum number of clusters. Draw the inferences from the clusters obtained. Data Description: The file EastWestAirlinescontains information on passengers who belong to an airline’s frequent flier program. For each passenger the data include information on their mileage histo…

  • Updated Feb 13, 2022
  • Jupyter Notebook

Perform Principal component analysis and perform clustering using first 3 principal component scores (both heirarchial and k mean clustering(scree plot or elbow curve) and obtain optimum number of clusters and check whether we have obtained same number of clusters with the original data (class column we have ignored at the begining who shows it …

  • Updated Jan 5, 2022
  • Jupyter Notebook

Assignment-07-K-Means-Clustering-Airlines. Perform clustering (K means clustering) for the airlines data to obtain optimum number of clusters. Draw the inferences from the clusters obtained. The file EastWestAirlinescontains information on passengers who belong to an airline’s frequent flier program. For each passenger the data include informati…

  • Updated Jun 26, 2021
  • Jupyter Notebook

This project demonstrates a Clustering Model using Python. An international humanitarian NGO that is committed to fighting poverty and providing the people of backward countries with basic amenities and relief during the time of disasters and natural calamities. It has been able to raise around $ 10 million. The model is needed to help decide ho…

  • Updated Feb 14, 2021
  • Jupyter Notebook

Unsupervised-ML---K-Means-Clustering-Non-Hierarchical-Clustering-Univ. Use Elbow Graph to find optimum number of clusters (K value) from K values range. The K-means algorithm aims to choose centroids that minimise the inertia, or within-cluster sum-of-squares criterion WCSS. Plot K values range vs WCSS to get Elbow graph for choosing K (no. of c…

  • Updated Jun 27, 2021
  • Jupyter Notebook

This repository contains clustering techniques applied to minute weather data. It contains K-Means, Heirarchical Agglomerative clustering. I have applied various feature scaling techniques and explored the best one for our dataset

  • Updated Jul 2, 2022
  • Jupyter Notebook

Perform Principal component analysis and perform clustering using first 3 principal component scores (both heirarchial and k mean clustering(scree plot or elbow curve) and obtain optimum number of clusters and check whether we have obtained same number of clusters with the original data (class column we have ignored at the beginning who shows it…

  • Updated Nov 2, 2021
  • Jupyter Notebook

Improve this page

Add a description, image, and links to the elbow-plot topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the elbow-plot topic, visit your repo's landing page and select "manage topics."

Learn more