Skip to content

repo contains sample code snippets on #ML, #DeepLearning, #GenAI topics

Notifications You must be signed in to change notification settings

uday160386/understanding-gen-ai-ml

Repository files navigation

Prerequisite

Pre-requisite

``pip install -r requirements.txt    ``

Test data is available:

/data_sample

Supervised Learning

Model Name Type Code Path
Logistic Regression Classification code_references/"2_ML_Programming,\ Math\ Foundations\ and\ Classical\ Algorithms"/05_LinearRegression_Sk_learn_Demo.ipynb
Linear Regression Regression code_references/"2_ML_Programming,\ Math\ Foundations\ and\ Classical\ Algorithms"/06_LinearRegression.ipynb
Decission Trees Classification/
Regression
code_references/"2_ML_Programming,\ Math\ Foundations\ and\ Classical\ Algorithms"/10_DecissionTree_Classifier_01.ipynb
Random Forest Classification/Regression code_references/"2_ML_Programming,\ Math\ Foundations\ and\ Classical\ Algorithms"/11_Bagging_RandomForest_classifier.ipynb
K-Nearest Neighbors Classification/Regression code_references/"2_ML_Programming,\ Math\ Foundations\ and\ Classical\ Algorithms"/08_KNNALgo.ipynb
Support Vector MAchines Classification/ Regression code_references/"2_ML_Programming,\ Math\ Foundations\ and\ Classical\ Algorithms"/12_SVM_Linear_example.ipynb

UnSupervised Learning