Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added: clustering algorithm #33

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
201 changes: 201 additions & 0 deletions Klustering algo/Mall_Customers.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
CustomerID,Genre,Age,Annual Income (k$),Spending Score (1-100)
0001,Male,19,15,39
0002,Male,21,15,81
0003,Female,20,16,6
0004,Female,23,16,77
0005,Female,31,17,40
0006,Female,22,17,76
0007,Female,35,18,6
0008,Female,23,18,94
0009,Male,64,19,3
0010,Female,30,19,72
0011,Male,67,19,14
0012,Female,35,19,99
0013,Female,58,20,15
0014,Female,24,20,77
0015,Male,37,20,13
0016,Male,22,20,79
0017,Female,35,21,35
0018,Male,20,21,66
0019,Male,52,23,29
0020,Female,35,23,98
0021,Male,35,24,35
0022,Male,25,24,73
0023,Female,46,25,5
0024,Male,31,25,73
0025,Female,54,28,14
0026,Male,29,28,82
0027,Female,45,28,32
0028,Male,35,28,61
0029,Female,40,29,31
0030,Female,23,29,87
0031,Male,60,30,4
0032,Female,21,30,73
0033,Male,53,33,4
0034,Male,18,33,92
0035,Female,49,33,14
0036,Female,21,33,81
0037,Female,42,34,17
0038,Female,30,34,73
0039,Female,36,37,26
0040,Female,20,37,75
0041,Female,65,38,35
0042,Male,24,38,92
0043,Male,48,39,36
0044,Female,31,39,61
0045,Female,49,39,28
0046,Female,24,39,65
0047,Female,50,40,55
0048,Female,27,40,47
0049,Female,29,40,42
0050,Female,31,40,42
0051,Female,49,42,52
0052,Male,33,42,60
0053,Female,31,43,54
0054,Male,59,43,60
0055,Female,50,43,45
0056,Male,47,43,41
0057,Female,51,44,50
0058,Male,69,44,46
0059,Female,27,46,51
0060,Male,53,46,46
0061,Male,70,46,56
0062,Male,19,46,55
0063,Female,67,47,52
0064,Female,54,47,59
0065,Male,63,48,51
0066,Male,18,48,59
0067,Female,43,48,50
0068,Female,68,48,48
0069,Male,19,48,59
0070,Female,32,48,47
0071,Male,70,49,55
0072,Female,47,49,42
0073,Female,60,50,49
0074,Female,60,50,56
0075,Male,59,54,47
0076,Male,26,54,54
0077,Female,45,54,53
0078,Male,40,54,48
0079,Female,23,54,52
0080,Female,49,54,42
0081,Male,57,54,51
0082,Male,38,54,55
0083,Male,67,54,41
0084,Female,46,54,44
0085,Female,21,54,57
0086,Male,48,54,46
0087,Female,55,57,58
0088,Female,22,57,55
0089,Female,34,58,60
0090,Female,50,58,46
0091,Female,68,59,55
0092,Male,18,59,41
0093,Male,48,60,49
0094,Female,40,60,40
0095,Female,32,60,42
0096,Male,24,60,52
0097,Female,47,60,47
0098,Female,27,60,50
0099,Male,48,61,42
0100,Male,20,61,49
0101,Female,23,62,41
0102,Female,49,62,48
0103,Male,67,62,59
0104,Male,26,62,55
0105,Male,49,62,56
0106,Female,21,62,42
0107,Female,66,63,50
0108,Male,54,63,46
0109,Male,68,63,43
0110,Male,66,63,48
0111,Male,65,63,52
0112,Female,19,63,54
0113,Female,38,64,42
0114,Male,19,64,46
0115,Female,18,65,48
0116,Female,19,65,50
0117,Female,63,65,43
0118,Female,49,65,59
0119,Female,51,67,43
0120,Female,50,67,57
0121,Male,27,67,56
0122,Female,38,67,40
0123,Female,40,69,58
0124,Male,39,69,91
0125,Female,23,70,29
0126,Female,31,70,77
0127,Male,43,71,35
0128,Male,40,71,95
0129,Male,59,71,11
0130,Male,38,71,75
0131,Male,47,71,9
0132,Male,39,71,75
0133,Female,25,72,34
0134,Female,31,72,71
0135,Male,20,73,5
0136,Female,29,73,88
0137,Female,44,73,7
0138,Male,32,73,73
0139,Male,19,74,10
0140,Female,35,74,72
0141,Female,57,75,5
0142,Male,32,75,93
0143,Female,28,76,40
0144,Female,32,76,87
0145,Male,25,77,12
0146,Male,28,77,97
0147,Male,48,77,36
0148,Female,32,77,74
0149,Female,34,78,22
0150,Male,34,78,90
0151,Male,43,78,17
0152,Male,39,78,88
0153,Female,44,78,20
0154,Female,38,78,76
0155,Female,47,78,16
0156,Female,27,78,89
0157,Male,37,78,1
0158,Female,30,78,78
0159,Male,34,78,1
0160,Female,30,78,73
0161,Female,56,79,35
0162,Female,29,79,83
0163,Male,19,81,5
0164,Female,31,81,93
0165,Male,50,85,26
0166,Female,36,85,75
0167,Male,42,86,20
0168,Female,33,86,95
0169,Female,36,87,27
0170,Male,32,87,63
0171,Male,40,87,13
0172,Male,28,87,75
0173,Male,36,87,10
0174,Male,36,87,92
0175,Female,52,88,13
0176,Female,30,88,86
0177,Male,58,88,15
0178,Male,27,88,69
0179,Male,59,93,14
0180,Male,35,93,90
0181,Female,37,97,32
0182,Female,32,97,86
0183,Male,46,98,15
0184,Female,29,98,88
0185,Female,41,99,39
0186,Male,30,99,97
0187,Female,54,101,24
0188,Male,28,101,68
0189,Female,41,103,17
0190,Female,36,103,85
0191,Female,34,103,23
0192,Female,32,103,69
0193,Male,33,113,8
0194,Female,38,113,91
0195,Female,47,120,16
0196,Female,35,120,79
0197,Female,45,126,28
0198,Male,32,126,74
0199,Male,32,137,18
0200,Male,30,137,83
Binary file added Klustering algo/dendrogrampy.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added Klustering algo/dendrogramrplot.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added Klustering algo/elbowmethodpyplot.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added Klustering algo/elbowmethodrplot.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
49 changes: 49 additions & 0 deletions Klustering algo/hc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
"""
Created on Fri Mar 31 21:41:34 2017

@author: Robert
"""

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('seaborn-deep')
import matplotlib.cm
cmap = matplotlib.cm.get_cmap('plasma')

# Reading in data
ds = pd.read_csv('Mall_Customers.csv')
X = ds.iloc[:, [3,4]].values

# Dendrogram to choose number of clusters (k)
import scipy.cluster.hierarchy as sch

plt.figure(1)
z = sch.linkage(X, method = 'ward')
dendrogram = sch.dendrogram(z)
plt.title('Dendrogram')
plt.xlabel('Customers')
plt.ylabel('Euclidean distances')
plt.show()

k = 5

# Clustering
from sklearn.cluster import AgglomerativeClustering

hc = AgglomerativeClustering(n_clusters = k, affinity = "euclidean",
linkage = 'ward')
y_hc = hc.fit_predict(X)

labels = [('Cluster ' + str(i+1)) for i in range(k)]

plt.figure(2)
for i in range(k):
plt.scatter(X[y_hc == i, 0], X[y_hc == i, 1], s = 20,
c = cmap(i/k), label = labels[i])
plt.xlabel('Age')
plt.ylabel('Spending score')
plt.title('HC cluster plot')
plt.legend()
plt.show()

17 changes: 17 additions & 0 deletions Klustering algo/hc.r
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@

# Reading in data
ds = read.csv('Mall_Customers.csv')
X = ds[,4:5]

# Creating dendrogram to choose k
hc = hclust(dist(X, method = "euclidean"), method = "ward.D")

plot(hc, labels = FALSE, hang = 0.03,
main = paste("Cluster Dendrogram"),
xlab = 'Customers',
ylab = "Euclidean distance")

# Clustering
y_hc = cutree(hc, 5)

plot(X, col = y_hc)
Binary file added Klustering algo/hcpyplot.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
54 changes: 54 additions & 0 deletions Klustering algo/kmeans.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
"""
Created on Wed Mar 29 21:42:38 2017

@author: Robert
"""

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('seaborn-deep')
from sklearn.cluster import KMeans
import matplotlib.cm
cmap = matplotlib.cm.get_cmap('plasma')


ds = pd.read_csv('Mall_Customers.csv')
X = ds.iloc[:, [3,4]].values

# Choosing the value of k by the elbow method
wcss = []

for i in range(1,21):
kmeans = KMeans(n_clusters=i)
kmeans.fit_transform(X)
wcss.append(kmeans.inertia_)

plt.figure()
plt.plot(range(1,21), wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()

# Clustering the data
k = 5
kmeans = KMeans(n_clusters = k)
y_kmeans = kmeans.fit_predict(X)

labels = [('Cluster ' + str(i+1)) for i in range(k)]

# Plotting the clusters
plt.figure()
for i in range(k):
plt.scatter(X[y_kmeans == i, 0], X[y_kmeans == i, 1], s = 20,
c = cmap(i/k), label = labels[i])

plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1],
s = 100, c = 'black', label = 'Centroids', marker = 'X')
plt.xlabel('Age')
plt.ylabel('Spending score')
plt.title('Kmeans cluster plot')
plt.legend()
plt.show()

19 changes: 19 additions & 0 deletions Klustering algo/kmeans.r
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@

# Reading in data
ds = read.csv('Mall_Customers.csv')
X = ds[4:5]

# Finding k
wcss = vector()
for (i in 1:10)
wcss[i] =sum(kmeans(X, i)$withinss)

plot(1:10, wcss, type = 'b', main=paste("Elbow method"), xlab = 'number clusters' )

# Clustering
kmeans = kmeans(X, 5)
y_kmeans = kmeans$cluster

# Visualising the clusters
plot(X, col = y_kmeans)
points(kmeans$center,col=1:2,pch=8,cex=1)
Loading