This project implements an AI-powered advertisement recommendation system that suggests relevant ads based on user preferences. The system uses advanced embedding techniques and similarity search to provide personalized ad recommendations.
- Load and process advertisement data
- Generate embeddings for ad content
- Similarity-based recommendation engine
- Interactive Streamlit web interface
- Qdrant vector database integration
- Clone the repository:
git clone https://github.com/yourusername/ads-recommendation-system.git
cd ads-recommendation-system
- Install dependencies:
pip install -r requirements.txt
- Run the Streamlit app:
streamlit run main.py
ads-recommendation-system/
│
├── data/ # Dataset directory
├── src/ # Source code
├── requirements.txt # Project dependencies
├── README.md # Project documentation
├── .gitignore # Git ignore rules
└── main.py # Main Streamlit application
- The system loads advertisement data from the provided JSON dataset
- Users can input their preferences or interests
- The system returns relevant ad recommendations based on the input
MIT License