Skip to content
/ DPA Public

About About [AAAI 2025] - Universal Domain Adaptive Object Detection via Dual Probabilistic Alignment

Notifications You must be signed in to change notification settings

zyfone/DPA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Universal Domain Adaptive Object Detection via Dual Probabilistic Alignment (DPA)

Code implementation for Universal Domain Adaptive Object Detection via Dual Probabilistic Alignment Zhi Hu (知乎)

LAST COMMIT ISSUES STARS

Universal Domain Adaptive Object Detection via Dual Probabilistic Alignment
Yuanfan Zheng1,2, Jinlin Wu1,2, Wuyang Li3, Zhen Chen*1
1 CAIR, HKISI-CAS; 2 MAIS, Institute of Automation, Chinese Academy of Sciences; 3 The Chinese University of Hong Kong

Framework

Requirements

Compile the code

#Compile the cuda dependencies using following simple commands following [Faster R-CNN](https://github.com/jwyang/faster-rcnn.pytorch/tree/pytorch-1.0):
cd lib
python setup.py build develop

Pre-trained Models

Components

Global-level Domain Private Alignment (GDPA)

  • Path: UniDAOD-DPA/lib/model/utils
  • Function: global_alignment()

Instance-level Domain Shared Alignment (IDSA)

  • Path: UniDAOD-DPA/lib/model/da_faster_rcnn/
  • File: openset_weight.py

Private Class Constraint (PCC)

  • Path: UniDAOD-DPA/lib/model/utils
  • Function: instance_alignment_private

Training and Test

Train the model

CUDA_VISIBLE_DEVICES=0 python -u da_train_net.py \
--max_epochs 10 --cuda --dataset voc2clipart_0.25 \
--net res101 --save_dir ./weight_model/voc2clipart_0.25 \
--pretrained_path XXXX/pretrained_model/resnet101_caffe.pth \
--gc --lc --da_use_contex --weight_consis 0.1 --lr_bound 0.1 --gmm_split 0.03

Test the well-trained model:

python test_clipart_0.25.py >> test-voc025.out

Train the model and test the well-trained model through the script:

sh train_scripts\train_voc2clipart_0.25.sh

If you have any questions , please contact me at 478756030@qq.com

@article{zheng2024universal,
  title={Universal Domain Adaptive Object Detection via Dual Probabilistic Alignment},
  author={Zheng, Yuanfan and Wu, Jinlin and Li, Wuyang and Chen, Zhen},
  journal={arXiv preprint arXiv:2412.11443},
  year={2024}
}

About

About About [AAAI 2025] - Universal Domain Adaptive Object Detection via Dual Probabilistic Alignment

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published