Code implementation for Universal Domain Adaptive Object Detection via Dual Probabilistic Alignment Zhi Hu (知乎)
Universal Domain Adaptive Object Detection via Dual Probabilistic Alignment
Yuanfan Zheng1,2, Jinlin Wu1,2, Wuyang Li3, Zhen Chen*1
1 CAIR, HKISI-CAS; 2 MAIS, Institute of Automation, Chinese Academy of Sciences; 3 The Chinese University of Hong Kong
- Ubuntu 18.04.5 LTS
- Python 3.6
- CUDA 10.0
- PyTorch 1.0.0
- Faster R-CNN
#Compile the cuda dependencies using following simple commands following [Faster R-CNN](https://github.com/jwyang/faster-rcnn.pytorch/tree/pytorch-1.0):
cd lib
python setup.py build develop
- Path:
UniDAOD-DPA/lib/model/utils
- Function:
global_alignment()
- Path:
UniDAOD-DPA/lib/model/da_faster_rcnn/
- File:
openset_weight.py
- Path:
UniDAOD-DPA/lib/model/utils
- Function: instance_alignment_private
Train the model
CUDA_VISIBLE_DEVICES=0 python -u da_train_net.py \
--max_epochs 10 --cuda --dataset voc2clipart_0.25 \
--net res101 --save_dir ./weight_model/voc2clipart_0.25 \
--pretrained_path XXXX/pretrained_model/resnet101_caffe.pth \
--gc --lc --da_use_contex --weight_consis 0.1 --lr_bound 0.1 --gmm_split 0.03
Test the well-trained model:
python test_clipart_0.25.py >> test-voc025.out
Train the model and test the well-trained model through the script:
sh train_scripts\train_voc2clipart_0.25.sh
If you have any questions , please contact me at 478756030@qq.com
@article{zheng2024universal,
title={Universal Domain Adaptive Object Detection via Dual Probabilistic Alignment},
author={Zheng, Yuanfan and Wu, Jinlin and Li, Wuyang and Chen, Zhen},
journal={arXiv preprint arXiv:2412.11443},
year={2024}
}