Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Changed the notation in xSM to match section 6.1 and manySinglets.py #346

Merged
merged 2 commits into from
Nov 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 21 additions & 21 deletions Models/SingletStandardModel_Z2/SingletStandardModel_Z2_Simple.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
from .singletStandardModelZ2 import SingletSMZ2, EffectivePotentialxSMZ2


# Z2 symmetric SM + singlet model. V = msq |phi|^2 + lam (|phi|^2)^2 + 1/2 b2 S^2 + 1/4 b4 S^4 + 1/2 a2 |phi|^2 S^2
# Z2 symmetric SM + singlet model. V = muHsq |phi|^2 + lHH (|phi|^2)^2 + 1/2 muSsq S^2 + 1/4 lSS S^4 + 1/2 lHS |phi|^2 S^2
class SingletSM_Z2_Simple(SingletSMZ2):

def __init__(self, initialInputParameters: dict[str, float]):
Expand Down Expand Up @@ -48,19 +48,19 @@ def evaluate(
# 4D units
thermalParameters = self.getThermalParameters(temperature)

msq = thermalParameters["msq"]
lam = thermalParameters["lambda"]
b2 = thermalParameters["b2"]
b4 = thermalParameters["b4"]
a2 = thermalParameters["a2"]
muHsq = thermalParameters["muHsq"]
lHH = thermalParameters["lHH"]
muSsq = thermalParameters["muSsq"]
lSS = thermalParameters["lSS"]
lHS = thermalParameters["lHS"]

# tree level potential
V0 = (
0.5 * msq * v**2
+ 0.25 * lam * v**4
+ 0.5 * b2 * x**2
+ 0.25 * b4 * x**4
+ 0.25 * a2 * v**2 * x**2
0.5 * muHsq * v**2
+ 0.25 * lHH * v**4
+ 0.5 * muSsq * x**2
+ 0.25 * lSS * x**4
+ 0.25 * lHS * v**2 * x**2
)

return V0 + self.constantTerms(temperature)
Expand All @@ -71,25 +71,25 @@ def constantTerms(self, temperature: float) -> float:
# Calculates thermally corrected parameters to use in Veff. So basically 3D effective params but keeping 4D units
def getThermalParameters(self, temperature: float) -> dict[str, float]:
T = temperature
msq = self.modelParameters["msq"]
lam = self.modelParameters["lambda"]
muHsq = self.modelParameters["muHsq"]
lHH = self.modelParameters["lHH"]
yt = self.modelParameters["yt"]
g1 = self.modelParameters["g1"]
g2 = self.modelParameters["g2"]

b2 = self.modelParameters["b2"]
a2 = self.modelParameters["a2"]
b4 = self.modelParameters["b4"]
muSsq = self.modelParameters["muSsq"]
lHS = self.modelParameters["lHS"]
lSS = self.modelParameters["lSS"]

# LO matching: only masses get corrected
thermalParameters = self.modelParameters.copy()

thermalParameters["msq"] = (
msq
+ T**2 / 16.0 * (3.0 * g2**2 + g1**2 + 4.0 * yt**2 + 8.0 * lam)
+ T**2 * a2 / 24.0
thermalParameters["muHsq"] = (
muHsq
+ T**2 / 16.0 * (3.0 * g2**2 + g1**2 + 4.0 * yt**2 + 8.0 * lHH)
+ T**2 * lHS / 24.0
)

thermalParameters["b2"] = b2 + T**2 * (1.0 / 6.0 * a2 + 1.0 / 4.0 * b4)
thermalParameters["muSsq"] = muSsq + T**2 * (1.0 / 6.0 * lHS + 1.0 / 4.0 * lSS)

return thermalParameters
58 changes: 29 additions & 29 deletions Models/SingletStandardModel_Z2/singletStandardModelZ2.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ class SingletSMZ2(GenericModel):
Z2 symmetric SM + singlet model.

The potential is given by:
V = msq |phi|^2 + lam |phi|^4 + 1/2 b2 S^2 + 1/4 b4 S^4 + 1/2 a2 |phi|^2 S^2
V = 1/2 muHsq |phi|^2 + 1/4 lHH |phi|^4 + 1/2 muSsq S^2 + 1/4 lSS S^4 + 1/4 lHS |phi|^2 S^2

This class inherits from the GenericModel class and implements the necessary
methods for the WallGo package.
Expand Down Expand Up @@ -195,14 +195,14 @@ def calculateLagrangianParameters(

# these are direct inputs:
modelParameters["RGScale"] = inputParameters["RGScale"]
modelParameters["a2"] = inputParameters["a2"]
modelParameters["b4"] = inputParameters["b4"]
modelParameters["lHS"] = inputParameters["lHS"]
modelParameters["lSS"] = inputParameters["lSS"]

modelParameters["lambda"] = 0.5 * massh1**2 / v0**2
modelParameters["lHH"] = 0.5 * massh1**2 / v0**2
# should be same as the following:
# modelParameters["msq"] = -massh1**2 / 2.
modelParameters["msq"] = -modelParameters["lambda"] * v0**2
modelParameters["b2"] = massh2**2 - 0.5 * v0**2 * inputParameters["a2"]
# modelParameters["muHsq"] = -massh1**2 / 2.
modelParameters["muHsq"] = -modelParameters["lHH"] * v0**2
modelParameters["muSsq"] = massh2**2 - 0.5 * v0**2 * inputParameters["lHS"]

# Then the gauge and Yukawa sector
massT = inputParameters["Mt"]
Expand Down Expand Up @@ -352,19 +352,19 @@ def evaluate(
fields = Fields(fields)
v, x = fields.getField(0), fields.getField(1)

msq = self.modelParameters["msq"]
b2 = self.modelParameters["b2"]
lam = self.modelParameters["lambda"]
b4 = self.modelParameters["b4"]
a2 = self.modelParameters["a2"]
muHsq = self.modelParameters["muHsq"]
muSsq = self.modelParameters["muSsq"]
lHH = self.modelParameters["lHH"]
lSS = self.modelParameters["lSS"]
lHS = self.modelParameters["lHS"]

# tree level potential
potentialTree = (
0.5 * msq * v**2
+ 0.25 * lam * v**4
+ 0.5 * b2 * x**2
+ 0.25 * b4 * x**4
+ 0.25 * a2 * v**2 * x**2
0.5 * muHsq * v**2
+ 0.25 * lHH * v**4
+ 0.5 * muSsq * x**2
+ 0.25 * lSS * x**4
+ 0.25 * lHS * v**2 * x**2
)

# Particle masses and coefficients for the CW potential
Expand Down Expand Up @@ -438,16 +438,16 @@ def bosonInformation( # pylint: disable=too-many-locals

# Scalar masses, just diagonalizing manually. matrix (A C // C B)
mass00 = (
self.modelParameters["msq"]
+ 0.5 * self.modelParameters["a2"] * x**2
+ 3 * self.modelParameters["lambda"] * v**2
self.modelParameters["muHsq"]
+ 0.5 * self.modelParameters["lHS"] * x**2
+ 3 * self.modelParameters["lHH"] * v**2
)
mass11 = (
self.modelParameters["b2"]
+ 0.5 * self.modelParameters["a2"] * v**2
+ 3 * self.modelParameters["b4"] * x**2
self.modelParameters["muSsq"]
+ 0.5 * self.modelParameters["lHS"] * v**2
+ 3 * self.modelParameters["lSS"] * x**2
)
mass01 = self.modelParameters["a2"] * v * x
mass01 = self.modelParameters["lHS"] * v * x
thingUnderSqrt = (mass00 - mass11) ** 2 + 4 * mass01**2

msqEig1 = 0.5 * (mass00 + mass11 - np.sqrt(thingUnderSqrt))
Expand All @@ -457,9 +457,9 @@ def bosonInformation( # pylint: disable=too-many-locals
mZsq = mWsq + self.modelParameters["g1"] ** 2 * v**2 / 4
# Goldstones
mGsq = (
self.modelParameters["msq"]
+ self.modelParameters["lambda"] * v**2
+ 0.5 * self.modelParameters["a2"] * x**2
self.modelParameters["muHsq"]
+ self.modelParameters["lHH"] * v**2
+ 0.5 * self.modelParameters["lHS"] * x**2
)

# h, s, chi, W, Z
Expand Down Expand Up @@ -697,8 +697,8 @@ def getBenchmarkPoints(self) -> list[ExampleInputPoint]:
"g3": 1.2279920495357861,
"mh1": 125.0,
"mh2": 120.0,
"a2": 0.9,
"b4": 1.0,
"lHS": 0.9,
"lSS": 1.0,
},
WallGo.PhaseInfo(
temperature=100.0, # nucleation temperature
Expand Down
16 changes: 8 additions & 8 deletions tests/Benchmarks/SingletSM_Z2/Benchmarks_singlet.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,8 @@
# scalar specific, choose Benoit benchmark values
"mh1": 125.0,
"mh2": 120.0,
"a2": 0.9,
"b4": 1.0,
"lHS": 0.9,
"lSS": 1.0,
},
phaseInfo={
"Tn": 100.0,
Expand Down Expand Up @@ -62,8 +62,8 @@
"g3": 1.2279920495357861,
"mh1": 125.0,
"mh2": 160.0,
"a2": 1.2,
"b4": 1.0,
"lHS": 1.2,
"lSS": 1.0,
},
{},
)
Expand All @@ -81,8 +81,8 @@
# scalar specific, choose Benoit benchmark values
"mh1": 125.0,
"mh2": 160.0,
"a2": 1.6,
"b4": 1.0,
"lHS": 1.6,
"lSS": 1.0,
},
{},
)
Expand All @@ -97,8 +97,8 @@
"g3": 1.2279920495357861,
"mh1": 125.0,
"mh2": 160.0,
"a2": 1.2,
"b4": 1.0,
"lHS": 1.2,
"lSS": 1.0,
},
{},
)
Expand Down
98 changes: 49 additions & 49 deletions tests/Benchmarks/SingletSM_Z2/test_EffectivePotential.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,20 +20,20 @@ def test_effectivePotential_V_singletSimple(

# parameters
thermalParameters = Veff.getThermalParameters(T)
msq = thermalParameters["msq"]
b2 = thermalParameters["b2"]
lam = thermalParameters["lambda"]
a2 = thermalParameters["a2"]
b4 = thermalParameters["b4"]
muHsq = thermalParameters["muHsq"]
muSsq = thermalParameters["muSsq"]
lam = thermalParameters["lHH"]
lHS = thermalParameters["lHS"]
lSS = thermalParameters["lSS"]

# fields
v = np.sqrt(2 * (-a2 * b2 + 2 * b4 * msq) / (a2**2 - 4 * b4 * lam))
x = np.sqrt(2 * (-a2 * msq + 2 * lam * b2) / (a2**2 - 4 * b4 * lam))
v = np.sqrt(2 * (-lHS * muSsq + 2 * lSS * muHsq) / (lHS**2 - 4 * lSS * lam))
x = np.sqrt(2 * (-lHS * muHsq + 2 * lam * muSsq) / (lHS**2 - 4 * lSS * lam))
fields = WallGo.Fields(([v, x]))

# exact results
f0 = -107.75 * np.pi**2 / 90 * T**4
VExact = (b4 * msq**2 - a2 * msq * b2 + lam * b2**2) / (a2**2 - 4 * b4 * lam)
VExact = (lSS * muHsq**2 - lHS * muHsq * muSsq + lam * muSsq**2) / (lHS**2 - 4 * lSS * lam)

# tolerance
Veff.dT = 1e-4 * T
Expand All @@ -58,15 +58,15 @@ def test_effectivePotential_dVdField_singletSimple(

# parameters
thermalParameters = Veff.getThermalParameters(T)
msq = thermalParameters["msq"]
b2 = thermalParameters["b2"]
lam = thermalParameters["lambda"]
a2 = thermalParameters["a2"]
b4 = thermalParameters["b4"]
muHsq = thermalParameters["muHsq"]
muSsq = thermalParameters["muSsq"]
lam = thermalParameters["lHH"]
lHS = thermalParameters["lHS"]
lSS = thermalParameters["lSS"]

# fields
v = np.sqrt(2 * (-a2 * b2 + 2 * b4 * msq) / (a2**2 - 4 * b4 * lam))
x = np.sqrt(2 * (-a2 * msq + 2 * lam * b2) / (a2**2 - 4 * b4 * lam))
v = np.sqrt(2 * (-lHS * muSsq + 2 * lSS * muHsq) / (lHS**2 - 4 * lSS * lam))
x = np.sqrt(2 * (-lHS * muHsq + 2 * lam * muSsq) / (lHS**2 - 4 * lSS * lam))
fields = WallGo.Fields(([v, x]))

# exact results
Expand Down Expand Up @@ -96,25 +96,25 @@ def test_effectivePotential_dVdT_singletSimple(

# parameters
thermalParameters = Veff.getThermalParameters(T)
msq = thermalParameters["msq"]
b2 = thermalParameters["b2"]
lam = thermalParameters["lambda"]
a2 = thermalParameters["a2"]
b4 = thermalParameters["b4"]
muHsq = thermalParameters["muHsq"]
muSsq = thermalParameters["muSsq"]
lam = thermalParameters["lHH"]
lHS = thermalParameters["lHS"]
lSS = thermalParameters["lSS"]
vacuumParameters = Veff.modelParameters
msq0 = vacuumParameters["msq"]
b20 = vacuumParameters["b2"]
muHsq0 = vacuumParameters["muHsq"]
muSsq0 = vacuumParameters["muSsq"]

# fields
v = np.sqrt(2 * (-a2 * b2 + 2 * b4 * msq) / (a2**2 - 4 * b4 * lam))
x = np.sqrt(2 * (-a2 * msq + 2 * lam * b2) / (a2**2 - 4 * b4 * lam))
v = np.sqrt(2 * (-lHS * muSsq + 2 * lSS * muHsq) / (lHS**2 - 4 * lSS * lam))
x = np.sqrt(2 * (-lHS * muHsq + 2 * lam * muSsq) / (lHS**2 - 4 * lSS * lam))
fields = WallGo.Fields(([v, x]))

# exact results
dVdTExact = (
-107.75 * np.pi**2 / 90 * 4 * T**3
+ (msq - msq0) / T * v**2
+ (b2 - b20) / T * x**2
+ (muHsq - muHsq0) / T * v**2
+ (muSsq - muSsq0) / T * x**2
)

# tolerance
Expand All @@ -140,25 +140,25 @@ def test_effectivePotential_d2VdFielddT_singletSimple(

# parameters
thermalParameters = Veff.getThermalParameters(T)
msq = thermalParameters["msq"]
b2 = thermalParameters["b2"]
lam = thermalParameters["lambda"]
a2 = thermalParameters["a2"]
b4 = thermalParameters["b4"]
muHsq = thermalParameters["muHsq"]
muSsq = thermalParameters["muSsq"]
lam = thermalParameters["lHH"]
lHS = thermalParameters["lHS"]
lSS = thermalParameters["lSS"]
vacuumParameters = Veff.modelParameters
msq0 = vacuumParameters["msq"]
b20 = vacuumParameters["b2"]
muHsq0 = vacuumParameters["muHsq"]
muSsq0 = vacuumParameters["muSsq"]

# fields
v = np.sqrt(2 * (-a2 * b2 + 2 * b4 * msq) / (a2**2 - 4 * b4 * lam))
x = np.sqrt(2 * (-a2 * msq + 2 * lam * b2) / (a2**2 - 4 * b4 * lam))
v = np.sqrt(2 * (-lHS * muSsq + 2 * lSS * muHsq) / (lHS**2 - 4 * lSS * lam))
x = np.sqrt(2 * (-lHS * muHsq + 2 * lam * muSsq) / (lHS**2 - 4 * lSS * lam))
fields = WallGo.Fields(([v, x]))

# exact results
d2VdFielddTExact = np.array(
[
2 * (msq - msq0) / T * v,
2 * (b2 - b20) / T * x,
2 * (muHsq - muHsq0) / T * v,
2 * (muSsq - muSsq0) / T * x,
]
)

Expand All @@ -185,25 +185,25 @@ def test_effectivePotential_d2VdField2_singletSimple(

# parameters
thermalParameters = Veff.getThermalParameters(T)
msq = thermalParameters["msq"]
b2 = thermalParameters["b2"]
lam = thermalParameters["lambda"]
a2 = thermalParameters["a2"]
b4 = thermalParameters["b4"]
muHsq = thermalParameters["muHsq"]
muSsq = thermalParameters["muSsq"]
lam = thermalParameters["lHH"]
lHS = thermalParameters["lHS"]
lSS = thermalParameters["lSS"]

# fields
v = np.sqrt(2 * (-a2 * b2 + 2 * b4 * msq) / (a2**2 - 4 * b4 * lam))
x = np.sqrt(2 * (-a2 * msq + 2 * lam * b2) / (a2**2 - 4 * b4 * lam))
v = np.sqrt(2 * (-lHS * muSsq + 2 * lSS * muHsq) / (lHS**2 - 4 * lSS * lam))
x = np.sqrt(2 * (-lHS * muHsq + 2 * lam * muSsq) / (lHS**2 - 4 * lSS * lam))
fields = WallGo.Fields(([v, x]))

# exact results
a = 4 * lam * (-(a2 * b2) + 2 * b4 * msq) / (a2**2 - 4 * b4 * lam)
a = 4 * lam * (-(lHS * muSsq) + 2 * lSS * muHsq) / (lHS**2 - 4 * lSS * lam)
b = (
(2 * a2)
* np.sqrt((2 * b2 * lam - a2 * msq) * (-(a2 * b2) + 2 * b4 * msq))
/ (a2**2 - 4 * b4 * lam)
(2 * lHS)
* np.sqrt((2 * muSsq * lam - lHS * muHsq) * (-(lHS * muSsq) + 2 * lSS * muHsq))
/ (lHS**2 - 4 * lSS * lam)
)
d = b4 * (8 * b2 * lam - 4 * a2 * msq) / (a2**2 - 4 * b4 * lam)
d = lSS * (8 * muSsq * lam - 4 * lHS * muHsq) / (lHS**2 - 4 * lSS * lam)
d2VdField2 = np.array([[a, b], [b, d]])


Expand Down
Loading
Loading