Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CAAFE: Add Bedrock Support #76

Merged
merged 2 commits into from
Nov 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion config/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,10 @@ save_artifacts:
feature_transformers:
- _target_: autogluon_assistant.transformer.CAAFETransformer
eval_model: lightgbm
llm_model: gpt-4o-2024-08-06
llm_provider: bedrock
llm_model: "anthropic.claude-3-5-sonnet-20241022-v2:0"
# llm_provider: openai
# llm_model: gpt-4o-2024-08-06
num_iterations: 5
optimization_metric: roc
- _target_: autogluon_assistant.transformer.OpenFETransformer
Expand Down
3 changes: 2 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,8 @@ dependencies = [
"python-calamine",
"sentence-transformers>=3.1.0",
"tenacity>=8.2.2,<10.0",
"gensim>=4.3",
"gensim>=4.3",
"pandas>=2.2"
]

[project.optional-dependencies]
Expand Down
21 changes: 15 additions & 6 deletions src/autogluon_assistant/transformer/feature_transformers/caafe.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,45 +17,53 @@ class CAAFETransformer(BaseFeatureTransformer):

def __init__(
self,
llm_provider: str = "openai",
llm_model: str = "gpt-3.5-turbo",
num_iterations: int = 2,
optimization_metric: str = "roc",
eval_model: str = "lightgbm",
region_name: str = "us-west-2",
**kwargs,
) -> None:
import openai
# Set up credentials if using OpenAI
if llm_provider == "openai":
import openai

openai.api_key = kwargs.get("openai_api_key", os.environ.get("OPENAI_API_KEY"))
openai.api_key = kwargs.get("openai_api_key", os.environ.get("OPENAI_API_KEY"))

pd.set_option("future.no_silent_downcasting", True)

self.llm_provider = llm_provider
self.llm_model = llm_model
self.iterations = num_iterations
self.optimization_metric = optimization_metric
self.eval_model = eval_model
self.region_name = region_name

# Initialize the base classifier
if self.eval_model == "tab_pfn":
from tabpfn import TabPFNClassifier

clf_no_feat_eng = TabPFNClassifier(device="cpu", N_ensemble_configurations=16)

elif self.eval_model == "lightgbm":
from lightgbm import LGBMClassifier

clf_no_feat_eng = LGBMClassifier()

else:
raise ValueError(f"Unsupported CAAFE eval model: {self.eval_model}")

self.caafe_clf = CAAFEClassifier(
base_classifier=clf_no_feat_eng,
optimization_metric=self.optimization_metric,
llm_provider=self.llm_provider,
llm_model=self.llm_model,
iterations=self.iterations,
region_name=self.region_name,
display_method="print",
**kwargs, # Pass through any additional provider-specific kwargs
)

self.metadata = {"transformer": "CAAFE"}
self.metadata = {"transformer": "CAAFE", "llm_provider": llm_provider, "llm_model": llm_model}

def _fit_dataframes(
self,
Expand Down Expand Up @@ -83,7 +91,8 @@ def _fit_dataframes(
train_X.columns,
target_column_name,
)
logger.info("CAAFE generated features:")

logger.info(f"CAAFE generated features using {self.llm_provider} model {self.llm_model}:")
logger.info(self.caafe_clf.code)

def _transform_dataframes(self, train_X: pd.DataFrame, test_X: pd.DataFrame) -> Tuple[pd.DataFrame, pd.DataFrame]:
Expand Down
Loading